OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)
收入囊中
- 拉普拉斯算子
- LOG算子(高斯拉普拉斯算子)
- OpenCV Laplacian函数
- 构建自己的拉普拉斯算子
- 利用拉普拉斯算子进行图像的锐化
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="600" height="500" alt="">上面是一阶导数。以下是二阶导数

![]() |
![]() |
图5-9 拉普拉斯的4种模板 |
拉普拉斯算子会放大噪声,因此我们採用了LOG算子,就是高斯拉普拉斯算子,先对图像进行高斯模糊。抑制噪声,再求二阶导数。二阶导数为0的地方就是图像的边界。
-
C++: void Laplacian(InputArray src,
OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
-
- src – Source image.
- dst – Destination image of the same size and the same number of channels as src .
- ddepth – Desired depth of the destination image.
- ksize – Aperture size used to compute the second-derivative filters. See getDerivKernels() for
details. The size must be positive and odd. - scale – Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See getDerivKernels() for
details. - delta – Optional delta value that is added to the results prior to storing them in dst .
- borderType – Pixel extrapolation method. See borderInterpolate() for
details.
This is done when ksize > 1 . When ksize == 1 ,
the Laplacian is computed by filtering the image with the following aperture:
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; int main( int, char** argv )
{ Mat src, src_gray;
int kernel_size = 3;
const char* window_name = "Laplace Demo"; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, src_gray, CV_RGB2GRAY );
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); Mat dst, abs_dst;
Laplacian( src_gray, dst, CV_16S, kernel_size);
convertScaleAbs( dst, abs_dst ); imshow( window_name, abs_dst );
waitKey(0);
return 0;
}
效果图:
1 | 1 | 1 |
1 | -8 | 1 |
1 | 1 | 1 |
这样的形式的算子,代码例如以下
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray,Kernel; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("dstImage", 1); Kernel = (Mat_<double>(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
Mat grad,abs_grad;
filter2D(gray, grad, CV_16S , Kernel, Point(-1,-1));
convertScaleAbs( grad, abs_grad ); imshow("dstImage", abs_grad);
waitKey();
return 0;
}
效果图就不发了,跟上面差点儿相同
拉普拉斯锐化的基本方法能够由下式表示:
![]() |
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1); Mat grad,abs_grad;
Laplacian( gray, grad, CV_16S, 3);
convertScaleAbs( grad, abs_grad );
Mat sharpped = gray + abs_grad; imshow("srcImage", gray);
imshow("dstImage", sharpped);
waitKey();
return 0;
}
效果图:
OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)的更多相关文章
- OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...
- OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...
- openCV2马拉松第19圈——Harris角点检測(自己实现)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...
- OpenCV图像处理篇之边缘检測算子
3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于 ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 图像边缘检測--OpenCV之cvCanny函数
图像边缘检測--OpenCV之cvCanny函数 分类: C/C++ void cvCanny( const CvArr* image, CvArr* edges, double threshold1 ...
- Canny边缘检測算法原理及其VC实现具体解释(一)
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般能够看作是一个阶跃,既从一个灰度值在非常小的缓冲区域内急剧变化到还有一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图 ...
- Python图像处理(8):边缘检測
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 此前已经得到了单个区域植株图像,接下来似乎应该尝试对这些区域进行分类识别.通过外形和叶脉进行植物种 ...
- 图像处理之Canny边缘检測
图像处理之Canny 边缘检測 一:历史 Canny边缘检測算法是1986年有John F. Canny开发出来一种基于图像梯度计算的边缘 检測算法,同一时候Canny本人对计算图像边缘提取学科的发展 ...
随机推荐
- 添加一种emit的应用,反射发出,较直接调用稍慢,但好过反射与表达式树。
System.Reflection.MethodInfo mInfo = typeof(TypeParse).GetMethod("Add", System.Reflection. ...
- java基础(1-50)-------->超级简单,不信你不会!!!
1:java中的保留字:const&goto; 2:&和&&都可以做逻辑运算符,即运算符两边的表达式都为true,结果才为true,一方为false,则结果为false ...
- 超实用的Nginx极简教程,覆盖了常用场景
概述 安装与使用 安装 使用 nginx 配置实战 http 反向代理配置 负载均衡配置 网站有多个 webapp 的配置 https 反向代理配置 静态站点配置 搭建文件服务器 跨域解决方案 参考 ...
- 串口调试利器--Minicom配置及使用详解.md
因为现在电脑基本不配备串行接口,所以,usb转串口成为硬件调试时的必然选择.目前知道的,PL2303的驱动是有的,在dev下的名称是ttyUSB*. Minicom,是Linux下应用比较广泛的串口软 ...
- Swagger2接口注释参数使用数组
allowMultiple = true, paramType = "query", dataType = "string" 输出的就是这样的:Array[st ...
- [译]在IB中实现自动布局
有关自动布局的其他文章: Autolayout Visual format language for autolayout Creating individual constraints 可怜的界面编 ...
- Android性能优化第(二)篇---Memory Monitor检测内存泄露
上篇说了一些性能优化的理论部分,主要是回顾一下,有了理论,小平同志又讲了,实践是检验真理的唯一标准,对于内存泄露的问题,现在通过Android Studio自带工具Memory Monitor 检测出 ...
- tensorflow 运行 python convolutional.py时
Traceback (most recent call last): File "convolutional.py", line 326, in <module> tf ...
- MFC中 日期字符串的转换
一.将字符串2011-08-1800:00:00转换为字符串2011-8-18,通过以下的函数 CString DataDeleteZero(CString DATA) { CStringstrmon ...
- Protel中的快捷键使用(网上资源)
使用快捷键之前,将输入法切换至中文(中国)状态 Enter——选取或启动 Esc——放弃或取消 F1——启动在线帮助窗 Tab——启动浮动图件的属性窗口 Page Up——放大窗口显示比例 Page ...