收入囊中

  • 拉普拉斯算子
  • LOG算子(高斯拉普拉斯算子)
  • OpenCV Laplacian函数
  • 构建自己的拉普拉斯算子
  • 利用拉普拉斯算子进行图像的锐化


葵花宝典
OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)  我们已经认识了3个一阶差分算子
拉普拉斯算子是二阶差分算子。为什么要增加二阶的算子呢?试想一下,假设图像中有噪声,噪声在一阶导数处也会取得极大值从而被当作边缘。然而求解这个极大值也不方便。採用二阶导数后,极大值点就为0了。因此值为0的地方就是边界。

有图有真相。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="600" height="500" alt="">上面是一阶导数。以下是二阶导数


基本理论公式:                                  

离散形式:

  

   
图5-9  拉普拉斯的4种模板

拉普拉斯算子会放大噪声,因此我们採用了LOG算子,就是高斯拉普拉斯算子,先对图像进行高斯模糊。抑制噪声,再求二阶导数。二阶导数为0的地方就是图像的边界。

关于LOG算子模版,在OpenCV2马拉松第20圈——blob特征检測原理与实现有具体实现



初识API
API不用解释了。和Sobel全然一样!

C++: void Laplacian(InputArray src,
OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
 
  • src – Source image.
  • dst – Destination image of the same size and the same number of channels as src .
  • ddepth – Desired depth of the destination image.
  • ksize – Aperture size used to compute the second-derivative filters. See getDerivKernels() for
    details. The size must be positive and odd.
  • scale – Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See getDerivKernels() for
    details.
  • delta – Optional delta value that is added to the results prior to storing them in dst .
  • borderType – Pixel extrapolation method. See borderInterpolate() for
    details.

This is done when ksize > 1 . When ksize == 1 ,
the Laplacian is computed by filtering the image with the following  aperture:


荷枪实弹
我们先调用API来实现
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; int main( int, char** argv )
{ Mat src, src_gray;
int kernel_size = 3;
const char* window_name = "Laplace Demo"; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, src_gray, CV_RGB2GRAY );
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); Mat dst, abs_dst;
Laplacian( src_gray, dst, CV_16S, kernel_size);
convertScaleAbs( dst, abs_dst ); imshow( window_name, abs_dst );
waitKey(0);
return 0;
}

效果图:



以下,我们用之前讲过的自己定义滤波实现,採用
1 1 1
1 -8 1
1 1 1

这样的形式的算子,代码例如以下


#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray,Kernel; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("dstImage", 1); Kernel = (Mat_<double>(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
Mat grad,abs_grad;
filter2D(gray, grad, CV_16S , Kernel, Point(-1,-1));
convertScaleAbs( grad, abs_grad ); imshow("dstImage", abs_grad);
waitKey();
return 0;
}

效果图就不发了,跟上面差点儿相同



举一反三
拉普拉斯算子有没有跟多的应用,当然有。比方图像锐化。
因为拉普拉斯是一种微分算子,它可增强图像中灰度突变的区域,减弱灰度的缓慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理。产生描写叙述灰度突变的图像。再将拉普拉斯图像与原始图像叠加而产生锐化图像。

拉普拉斯锐化的基本方法能够由下式表示:

锐化代码
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1); Mat grad,abs_grad;
Laplacian( gray, grad, CV_16S, 3);
convertScaleAbs( grad, abs_grad );
Mat sharpped = gray + abs_grad; imshow("srcImage", gray);
imshow("dstImage", sharpped);
waitKey();
return 0;
}

效果图:




有放大噪声(非常难避免)



计算机视觉讨论群162501053
转载请注明:http://blog.csdn.net/abcd1992719g


OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)的更多相关文章

  1. OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...

  2. OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)

    收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...

  3. openCV2马拉松第19圈——Harris角点检測(自己实现)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...

  4. OpenCV图像处理篇之边缘检測算子

    3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于 ...

  5. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  6. 图像边缘检測--OpenCV之cvCanny函数

    图像边缘检測--OpenCV之cvCanny函数 分类: C/C++ void cvCanny( const CvArr* image, CvArr* edges, double threshold1 ...

  7. Canny边缘检測算法原理及其VC实现具体解释(一)

    图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般能够看作是一个阶跃,既从一个灰度值在非常小的缓冲区域内急剧变化到还有一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图 ...

  8. Python图像处理(8):边缘检測

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 此前已经得到了单个区域植株图像,接下来似乎应该尝试对这些区域进行分类识别.通过外形和叶脉进行植物种 ...

  9. 图像处理之Canny边缘检測

    图像处理之Canny 边缘检測 一:历史 Canny边缘检測算法是1986年有John F. Canny开发出来一种基于图像梯度计算的边缘 检測算法,同一时候Canny本人对计算图像边缘提取学科的发展 ...

随机推荐

  1. 基于c语言中调试工具的用法汇总(不包含gdb)【转】

    转自:http://www.jb51.net/article/36829.htm 是不是只有编译的时候才知道程序写了错误?有没有在未编译的时候就让机器帮你检查错误的工具呢? 答案是:有!! splin ...

  2. hdu 2654(欧拉函数)

    Become A Hero Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU 5131.Song Jiang's rank list (2014ACM/ICPC亚洲区广州站-重现赛)

    Song Jiang's rank list Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java ...

  4. Codeforces Gym100971 B.Derangement (IX Samara Regional Intercollegiate Programming Contest Russia, Samara, March 13)

    昨天训练打的Gym,今天写题解. 这个题就是输出的时候有点小问题,其他的都很简单. 代码: #include<iostream> #include<cstring> #incl ...

  5. luogu P1854 花店橱窗布置

    题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V是花瓶的数目.花束可以移动,并且每束花用1到F的整数标识 ...

  6. getenv, _wgetenv

    Description The C library function char *getenv(const char *name) searches for the environment strin ...

  7. main函数参数

    方法1. C/C++语言中的main函数,经常带有参数argc,argv,如下: int main(int argc, char** argv) int main(int argc, char* ar ...

  8. Displaying Modal Window Messages in Oracle Forms Using Show_Alert

    You can display modal windows in Oracle Forms to display normal messages, error message or asking fo ...

  9. Python爬虫抓取东方财富网股票数据并实现MySQL数据库存储

    Python爬虫可以说是好玩又好用了.现想利用Python爬取网页股票数据保存到本地csv数据文件中,同时想把股票数据保存到MySQL数据库中.需求有了,剩下的就是实现了. 在开始之前,保证已经安装好 ...

  10. Flutter开发记录part1

    (1)AppBar:automaticallyImplyLeading//是否带返回leading箭头 (2)非route路由页面跳转 :Navigator.of(context).push(Mate ...