UVA10689 Yet another Number Sequence —— 斐波那契、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10689


题解:

代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; LL MOD;
const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA tmp = {
, ,
,
}; int main()
{
LL f[], n, m;
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld%lld%lld",&f[],&f[],&n,&m);
if(n<)
{
printf("%lld\n", f[n]);
continue;
} MOD = ;
while(m--) MOD *= ;
MA s = tmp;
s = qpow(s, n-);
LL ans = (1LL*s.mat[][]*f[]%MOD+1LL*s.mat[][]*f[]%MOD)%MOD;
printf("%lld\n", ans);
}
}
UVA10689 Yet another Number Sequence —— 斐波那契、矩阵快速幂的更多相关文章
- HDU 2855 斐波那契+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...
- 「GXOI / GZOI2019」逼死强迫症——斐波那契+矩阵快速幂
题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \t ...
- 2018年湘潭大学程序设计竞赛G又见斐波那契(矩阵快速幂)
题意 题目链接 Sol 直接矩阵快速幂 推出来的矩阵应该长这样 \begin{equation*}\begin{bmatrix}1&1&1&1&1&1\\1 & ...
- 51Nod - 1242 斐波那契(快速幂)
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU5950 Recursive sequence 非线性递推式 矩阵快速幂
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...
- DNA Sequence POJ - 2778 AC自动机 && 矩阵快速幂
It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to ...
随机推荐
- html的诸多标签
1.p和br标签 p表示段落,默认段落之间是有间隔的! br是换行 hr是一条水平线 2.a标签,超链接 <a href="http://www.baidu.com" tar ...
- loj #110. 乘法逆元
#110. 乘法逆元 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 这是一道模板题. 给定 ...
- 第4章 CentOS软件安装
一.安装JDK 1.1 卸载旧版JDK 首先,在你的服务器上运行一下更新. yum update 然后,在您的系统上搜索,任何版本的已安装的JDK组件. rpm -qa | grep -E '^ope ...
- OSI-ISO 七层协议通信模型
- Revolving Digits
题面 [题目描述]: 有一天,Silence对可以旋转的正整数十分感兴趣.在旋转操作中,他可以把后面的数字按照原位置不动地搬到剩下位置的前面.当然,他也可以完全不动这串数字.比如,他可以把123变为1 ...
- NSThread学习
使用多线程可以防止主线程阻塞.同时也可以将一个大的任务分成若干个小的任务去做. 常用方法一: 1, 首先使用 detachNewThreadSelector:toTarget:withObject: ...
- PHP compact() 函数
Compact ---- 创建一个包含变量名和它们的值的数组: <?php $firstname = "Bill"; $lastname = "Gates" ...
- Word Ladder(找出start——end的最短长度)——bfs
Word Ladder Given two words (start and end), and a dictionary, find the length of shortest transform ...
- 浅谈PropertyChanged是如何被初始化的?
http://www.cnblogs.com/wpcockroach/p/3909081.html
- C++编译错误 2001 1120
无法解析的外部符号"symbol" 代码引用了链接器无法在库和对象文件中找到的内容(如函数.变量或标签). 该错误信息之后为错误 LNK1120. 可能的原因 : 在将托管库或 W ...