题目背景

话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去。大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆人一起,总共需要支付的钱是一样的(每辆出租上除司机外最 多坐下 4 个人)。刚好那天同校的一群 Oier 在校门口扎堆了,大家果断决定拼车 去赛场。

问题来了,一辆又一辆的出租车经过,但里面要么坐满了乘客,要么只剩下 一两个座位,众 Oier 都觉得坐上去太亏了,小 x 也是这么想的。

题目描述

假设 N 位 Oier 准备拼车,此时为 0 时刻,从校门到目的地需要支付给出租

车师傅 D 元(按车次算,不管里面坐了多少 Oier),假如 S 分钟后恰能赶上比赛,

那么 S 分钟后经过校门口的出租车自然可以忽略不计了。现在给出在这 S 分钟当

中经过校门的所有的 K 辆出租车先后到达校门口的时间 T i 及里面剩余的座位 Zi

(1 <= Zi <= 4),Oier 可以选择上车几个人(不能超过),当然,也可以选择上 0 个

人,那就是不坐这辆车。

俗话说,时间就是金钱,这里小 x 把每个 Oier 在校门等待出租车的分钟数 等同于花了相同多的钱(例如小 x 等待了 20 分钟,那相当于他额外花了 20 元钱)。

在保证所有 Oier 都能在比赛开始前到达比赛地点的情况下,聪明的你能计 算出他们最少需要花多少元钱么?

输入输出格式

输入格式:

每组数据以四个整数 N , K , D , S 开始,具体含义参见题目描述。

接着 K 行,表示第 i 辆出租车在第 Ti 分钟到达校门,其空余的座位数为 Zi

(时间按照先后顺序)。

N <= 100,K <= 100,D <= 100,S <= 100,1 <= Zi <= 4,1<= T(i) <= T(i+1) <= S

输出格式:

对于每组测试数据,输出占一行,如果他们所有人能在比赛前到达比赛地点,

则输出一个整数,代表他们最少需要花的钱(单位:元),否则请输出“impossible”。

输入输出样例

输入样例#1:

2 2 10 5
1 1
2 2
输出样例#1:

14

dp题,,,看了半天没推出方程来,然后看的题解才看懂的、、(ORZ、、)状态转移方程:f[i][j]=f[i][j-1](初始状态),f[i][j]=min(f[i][j],f[i-1][j-k]+k*t[i]+d)这个地发f[i][j]表示到第i辆车上了j个人的最少耗费钱数k是我们枚举的在这辆车上上了几个人一直T,结果是输入输错了。。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 110
using namespace std;
int n,k,d,S,t[N],sum,f[N][N];
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
struct Node
{
    int t,s;
}a[N];
int main()
{
    n=read(),k=read(),d=read(),S=read();
    ;i<=k;i++)
      a[i].t=read(),a[i].s=read(),sum+=a[i].s;
    memset(f,,sizeof(f));
    f[][]=;
    ;i<=k;i++)
     ;j<=n;j++)
     {
        f[i][j]=f[i-][j];
        ;k<=min(j,a[i].s);k++)
          f[i][j]=min(f[i][j],f[i-][j-k]+k*a[i].t+d);
     }
    ) printf("impossible");
    else printf("%d",f[k][n]);
    ;
}

洛谷——P1977 出租车拼车的更多相关文章

  1. dp 洛谷P1977 出租车拼车 线性dp

    题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆人一起,总共需要支付的钱 ...

  2. 洛谷—— P1977 出租车拼车

    https://www.luogu.org/problem/show?pid=1977 题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总 ...

  3. P1977 出租车拼车

    P1977 出租车拼车 题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆 ...

  4. P1977 出租车拼车(DP)

    题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆人一起,总共需要支付的钱 ...

  5. 【洛谷p1012】拼数

    (今天yuezhuren大课间放我们出来了……) (另外今天回了两趟初中部) 拼数[传送门] 洛谷算法标签: (然鹅这两个学的都不好,能过真的how strange) 开始的时候没读题啊,直接暴力so ...

  6. 洛谷 P4497 - [WC2011]拼点游戏(数据结构综合)

    题面传送门 神仙 DS. 首先关于第一问可以轻松想到一个 DP,\(dp_{i,j}\) 表示考虑到第 \(i\) 位,这一位奇偶性为 \(j\) 的最大权值,时间复杂度 \(n^2q\),可以拿到 ...

  7. 洛谷 P1350 车的放置

    洛谷 P1350 车的放置 题目描述 有下面这样的一个网格棋盘,a,b,c,d表示了对应边长度,也就是对应格子数. 当a=b=c=d=2时,对应下面这样一个棋盘 要在这个棋盘上放K个相互不攻击的车,也 ...

  8. 【题解】洛谷P1350 车的放置(矩阵公式推导)

    洛谷P1350:https://www.luogu.org/problemnew/show/P1350 思路 把矩阵分为上下两块N与M 放在N中的有i辆车 则放在M中有k-i辆车 N的长为a   宽为 ...

  9. 洛谷P1189 逃跑的拉尔夫(SEARCH)

    洛谷1189 SEARCH 题目描述 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的 ...

随机推荐

  1. OpenCV学习笔记(六) 滤波器 形态学操作(腐蚀、膨胀等)

    转自:OpenCV 教程 另附:计算机视觉:算法与应用(2012),Learning OpenCV(2009) 平滑图像:滤波器 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法.平滑处理的 ...

  2. Leetcode 516.最长回文子序列

    最长回文子序列 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1:输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 " ...

  3. python 文件(file)操作

    操作文件的一般流程有: 打开文件.文件处理.关闭文件 开开文件的模式有: r,只读模式(默认). w,只写模式.[不可读:不存在则创建:存在则删除内容:] a,追加模式.[不可读: 不存在则创建:存在 ...

  4. [问题解决]NotImplementedError 错误原因:子类没有实现父类要求一定要实现的接口

    NotImplementedError: 子类没有实现父类要求一定要实现的接口. 在面向对象编程中,父类中可以预留一个接口不实现,要求在子类中实现.如果一定要子类中实现该方法,可以使用raise No ...

  5. 获取完整的URL request.getQueryString()

    public String codeToString(String str) { String strString = str; try { byte tempB[] = strString.getB ...

  6. Summary—【base】(HTML)

    Html知识点: 1. 建议开发人员计算机基本配置 a) 显示所有文件的后缀名* b) 文件的排列方式改为详细信息,并且名称一定要能够全部显示出来 c) 使用小的任务栏 d) 将常用的工具锁定到任务栏 ...

  7. html5中checkbox的选中状态的设置与获取

    获取checkbox是否选中: $("#checkbox").is(":checked"); 获得的值为true或false. 设置checkbox是否选中: ...

  8. CLion 使用笔记(三)

    我已经在博客里面发布了好几篇 CLion 使用笔记了,没追究这是第几篇,姑且算作第三篇. 我的 CLion 是搭配了 MSYS2 和 Conan 使用的.MSYS2 提供 C++ toolchain. ...

  9. [CQOI2016][bzoj4519] 不同的最小割 [最小割树]

    题面 传送门 思路 首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍[废话] 但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?) 那我们就要尽量找 ...

  10. 【VBA】Do While……Loop循环,遍历某列

    [说明] Do While……Loop循环,遍历某列 i = Do While Trim(T_sh.Cells(i, NOTESID_COL)) <> "" If T_ ...