poj 3321(树状数组)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 24954 | Accepted: 7447 |
Description
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.
The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.
The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

Input
The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"C x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"Q x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning
Output
Sample Input
3
1 2
1 3
3
Q 1
C 2
Q 1
Sample Output
3
2
题意:一棵树上有n个结点,每个节点上面都有一个苹果,现在给两个操作:
C x 如果第 x 个节点上存在苹果,则摘掉,如果没有,那么会长一个出来。
Q x 问 x 的子树里面有多少个苹果。
题解:DFS进行节点的重新标记,求出每个结点的"管辖范围",然后每次更新左区间,求和就用sum(R[x]) - sum(L[x]-1)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <vector>
using namespace std;
const int N = ;
int L[N],R[N],c[N]; ///[L[i],R[i]] 是第i个点的管辖范围
bool flag[N];
int n,key;
vector <int> edge[N];
int lowbit(int x){
return x&(-x);
}
void update(int idx,int v){
for(int i=idx;i<=n;i+=lowbit(i)){
c[i]+=v;
}
}
int getsum(int idx){
int sum = ;
for(int i=idx;i>=;i-=lowbit(i)){
sum+=c[i];
}
return sum;
}
void dfs(int idx){
L[idx] = key;
for(int i=;i<edge[idx].size();i++){
key+=;
dfs(edge[idx][i]);
}
R[idx] = key;
}
int main()
{
while(scanf("%d",&n)!=EOF){
key = ;
memset(c,,sizeof(c));
memset(flag,false,sizeof(flag));
for(int i=;i<=n;i++) edge[i].clear();
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
}
dfs();
for(int i=;i<=n;i++){
update(i,);
}
int q;
scanf("%d",&q);
while(q--){
char s[];
int x;
scanf("%s%d",s,&x);
if(s[]=='Q'){
printf("%d\n",getsum(R[x])-getsum(L[x]-));
}else{
if(flag[x]){
update(L[x],);
}else update(L[x],-);
flag[x] = !flag[x];
}
}
}
return ;
}
poj 3321(树状数组)的更多相关文章
- POJ 3321 树状数组(+dfs+重新建树)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27092 Accepted: 8033 Descr ...
- POJ 2352Stars 树状数组
Stars Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 42898 Accepted: 18664 Descripti ...
- poj 2299 树状数组求逆序数+离散化
http://poj.org/problem?id=2299 最初做离散化的时候没太确定可是写完发现对的---由于后缀数组学的时候,,这样的思维习惯了吧 1.初始化as[i]=i:对as数组依照num ...
- poj 3928 树状数组
题目中只n个人,每个人有一个ID和一个技能值,一场比赛需要两个选手和一个裁判,只有当裁判的ID和技能值都在两个选手之间的时候才能进行一场比赛,现在问一共能组织多少场比赛. 由于排完序之后,先插入的一定 ...
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
- poj 2299 树状数组求逆序对数+离散化
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 54883 Accepted: 20184 ...
- poj 2182 树状数组
这题对于O(n^2)的算法有很多,我这随便贴一个烂的,跑了375ms. #include<iostream> #include<algorithm> using namespa ...
- POJ 2352 树状数组
学习自:链接以及百度百科 以及:https://www.bilibili.com/video/av18735440?from=search&seid=363548948825132979 理解 ...
- POJ 2299树状数组求逆序对
求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...
随机推荐
- Android系统中标准Intent的使用
Android系统用于Activity的标准Intent 1.根据联系人ID显示联系人信息= Intent intent=new Intent(); intent.setAction(Intent.A ...
- [译]The Python Tutorial#3. An Informal Introduction to Python
3. An Informal Introduction to Python 在以下示例中,输入和输出以提示符(>>>和...)的出现和消失来标注:如果想要重现示例,提示符出现时,必须 ...
- java+Mysql大数据的一些优化技巧
众所周知,java在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法; 例如,我们要将 ...
- Missian指南三:创建一个Missian服务器(使用spring)
在使用Missian时,spring是可选的,但是作者本人强烈推荐和Spring配合使用.Spring是一个伟大的项目,并且它不会对程序在运行时的效率带来任何损耗. Missian在服务器端依赖与Mi ...
- day13内置函数
内置函数 一.三元表达式 def max2(x,y): if x>y: return x else: return y res=max2(10,11) print(res) 三元表达式仅应用于: ...
- A1009 Product of Polynomials (25)(25 分)
A1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are tw ...
- sql优化系列2
sql中索引是否会用到,进而影响查询效率. 带通配符(%)的like语句 1.不能用null作索引,任何包含null值的列都将不会被包含在索引中.即使索引有多列这样的情况下,只要这些列中有一列含有nu ...
- vue时时监听input输入框中 输入内容 写法
Vue input 监听 使用 v-on:input="change" 实现即可 App.vue <template> <div> <md-field ...
- loj2090 「ZJOI2016」旅行者
分治+最短路,很套路的 #include <algorithm> #include <iostream> #include <cstring> #include & ...
- C++文件读写之对象的读写
这里以一个简单的学生信息管理系统为例. 首先是对象的建立,包括姓名,学号,成绩,学分,等 如下: 这里面包括两个子对象, class Student { public: Student() :scor ...