A* k短路 学习笔记
题目大意
n个点,m条边有向图,给定S,T,求不严格k短路
n<=1000 m<=100000 k<=1000
不用LL
分析
A*算法
f(i)表示从S出发经过i到T的估价函数
\(f(i)=g(i)+h(i)\)
g(i)表示S-i的实际代价
h(i)表示i-T的估计代价
要保证h(n)小于等于n到t的实际代价
本题中h(i)估价用逆图dijkstra一波直接求i-T最短路径作为估价
然后从S开始按照f为关键字用堆优化搜索
其实写法是类似于dijkstra的
不难从f(i)如果出现了K+1短,K+1短及之后都可以不要的
所以记录cnt[i]
每个点i出队一次,就找到了第++cnt[i]个f(i)
当T第k次出队就是答案
注意
dijkstra和Astar是可以共用一个结构体进行堆优化的
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <queue>
using namespace std;
const int N=1007;
const int M=100007;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m;
int S,K,T;
int g[N],te;
int hd[N],tb;
struct edge{
int y,d,next;
}e[M<<1],bck[M<<1];
void addedge(int x,int y,int z){
e[++te].y=y;e[te].d=z;e[te].next=g[x];g[x]=te;
}
void addbck(int x,int y,int z){
bck[++tb].y=y;bck[tb].d=z;bck[tb].next=hd[x];hd[x]=tb;
}
struct node{
int id,g,f;
node(int ii=0,int gg=0,int ff=0){id=ii;g=gg;f=ff;}
bool operator < (node b) const{
return f>b.f;
}
};
priority_queue<node>q;
int h[N],vis[N];
void dijkstra(){
q.push(node(T,0,0));
memset(h,127,sizeof(h));
h[T]=0;
int x,p,y;
node nw;
while(!q.empty()){
nw=q.top();q.pop();
x=nw.id;
if(vis[x]) continue;
vis[x]=1;
for(p=hd[x];p;p=bck[p].next){
y=bck[p].y;
if(h[x]+bck[p].d<h[y]){
h[y]=h[x]+bck[p].d;
q.push(node(y,0,h[y]));
}
}
}
}
int cnt[N];
bool Astar(){
q.push(node(S,0,h[S]));
int x,p,y;
node nw;
while(!q.empty()){
nw=q.top();q.pop();
x=nw.id;
cnt[x]++;
if(cnt[x]==K&&x==T){
printf("%d\n",nw.f);
return 1;
}
if(cnt[x]>K) continue;
for(p=g[x];p;p=e[p].next){
y=e[p].y;
q.push(node(y,nw.g+e[p].d,nw.g+e[p].d+h[y]));
}
}
return 0;
}
int main(){
int i,x,y,z;
n=rd(),m=rd();
for(i=1;i<=m;i++){
x=rd(),y=rd(),z=rd();
addedge(x,y,z);
addbck(y,x,z);
}
S=rd(),T=rd(),K=rd();
dijkstra();
if(Astar()==0) puts("-1");
return 0;
}
A* k短路 学习笔记的更多相关文章
- K短路 学习笔记
K短路,顾名思义,是让你求从$s$到$t$的第$k$短的路. 暴力当然不可取,那么我们有什么算法可以解决这个问题? -------------------------- 首先,我们要维护一个堆. st ...
- 【学习笔记】K 短路问题详解
\(k\) 短路问题简介 所谓"\(k\) 短路"问题,即给定一张 \(n\) 个点,\(m\) 条边的有向图,给定起点 \(s\) 和终点 \(t\),求出所有 \(s\to t ...
- bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]
1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...
- [原创]java WEB学习笔记71:Struts2 学习之路-- struts2常见的内建验证程序及注意点,短路验证,非字段验证,错误消息的重用
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- 算法笔记--次小生成树 && 次短路 && k 短路
1.次小生成树 非严格次小生成树:边权和小于等于最小生成树的边权和 严格次小生成树: 边权和小于最小生成树的边权和 算法:先建好最小生成树,然后对于每条不在最小生成树上的边(u,v,w)如果我们 ...
- 学习笔记之Java程序设计实用教程
Java程序设计实用教程 by 朱战立 & 沈伟 学习笔记之JAVA多线程(http://www.cnblogs.com/pegasus923/p/3995855.html) 国庆休假前学习了 ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- Day 4 学习笔记 各种图论
Day 4 学习笔记 各种图论 图是什么???? 不是我上传的图床上的那些垃圾解释... 一.图: 1.定义 由顶点和边组成的集合叫做图. 2.分类: 边如果是有向边,就是有向图:否则,就是无向图. ...
- OI知识点|NOIP考点|省选考点|教程与学习笔记合集
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...
随机推荐
- mtDNA|ctDNA|cpDNA|
5.9细胞器基因组是编码细胞器蛋白质的环状DNA分子 细胞器中除真核细胞线粒体DNA(mtDNA)是线性的外,都是环状分子,比如叶绿体DNA(ctDNA,cpDNA).因为单个细胞器有几套不同拷贝的细 ...
- 第三单元OO总结
- Xcode开发技巧
1.Xcode 中的 Code Snippets 默认放在下面的目录中: ~/Library/Developer/Xcode/UserData/CodeSnippets 2.自定义的代码背景颜色和代码 ...
- redis代理集群(Twemproxy)(1)
redis主从+哨兵模式只解决了读的分布式操作,大大提高了性能:但是写操作,只有主主机器才能进行,从机器无法进行写操作.此时,Twemproxy也就出现了. 这个模式单纯的安装有些复杂,需要引入很多的 ...
- leetcode-20-Dynamic Programming
303. Range Sum Query - Immutable 解题思路: Note里说sumRange会被调用很多次..所以简直强烈暗示要做cache啊...所以刚开始,虽然用每次都去遍历数组求和 ...
- HDU:1269-迷宫城堡(tarjan模板)
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Descri ...
- hdu 6312
Problem Description Alice and Bob are playing a game.The game is played on a set of positive integer ...
- linux学习-用户的特殊 shell 与 PAM 模块
特殊的 shell, /sbin/nologin 『无法登入』指的是:『这个使用者无法使用 bash 或其他 shell 来登入系统』而已, 并不是说这个账号就无法使用其他的系统资源! 让某个具有 / ...
- Java中对象方法的调用过程&动态绑定(Dynamic Binding)
Java面向对象的最重要的一个特点就是多态, 而多态当中涉及到了一个重要的机制是动态绑定(Dynamic binding). 之前只有一个大概的概念, 没有深入去了解动态绑定的机理, 直到很多公司都问 ...
- apache php 多站点配置 重新整理
需要下载的东东:apache_2.0.59-win32-x86-no_ssl.msi (服务器软件,用来编译PHP的) php-5.1.5-Win32.zip (PHP的主文件) 第一步:1.安装 ...