原题链接:http://poj.org/problem?id=3268

Silver Cow Party
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 15545   Accepted: 7053

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

题意

有一只牛举办派对,其他的牛去参加,牛都会走最短路,并且派对结束还要回到自己家里。问哪头牛走的路径最长,输出最长路径。

题解

就跑两边spfa,正着反着跑两次。然后就搞定了。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
int n,m,x;
void spfa(int s,vector<edge> G[],int d[]) {
fill(d, d + n + , INF);
que.push(node(s, ));
d[s] = ;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = d[u] + G[u][i].cost;
if (t < d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
} vector<edge> G[MAX_N],rG[MAX_N];
int d[MAX_N],rd[MAX_N];
int main() {
scanf("%d%d%d", &n, &m, &x);
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
rG[v].push_back(edge(u, c));
}
spfa(x, G, d);
while (que.size())que.pop();
spfa(x, rG, rd);
int ans = ;
for (int i = ; i <= n; i++)ans = max(ans, d[i] + rd[i]);
cout<<ans<<endl;
return ;
}

POJ 3268 Silver Cow Party 最短路的更多相关文章

  1. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  2. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  3. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  4. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  5. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  6. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  7. poj 3268 Silver Cow Party(最短路)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17017   Accepted: 7767 ...

  8. POJ - 3268 Silver Cow Party SPFA+SLF优化 单源起点终点最短路

    Silver Cow Party One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to ...

  9. POJ 3268 Silver Cow Party 单向最短路

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22864   Accepted: 1044 ...

随机推荐

  1. GOPATH和GOROOT

    安装指定版本golang apt-get purge golang* //删除之前安装的文件 add-apt-repository ppa:evarlast/golang-1.8 apt-get up ...

  2. WZK的减肥计划

    WZK 的减肥计划(plan.cpp/ plan.in/ plan.out)问题描述:WZK 发现他的体重正迅猛的上升着,对此他感到非常焦虑,想要制定出一套完美的减肥计划. 于是 WZK 翻阅资料,查 ...

  3. Linux学习-备份的种类、频率与工具的选择

    完整备份之累积备份 (Incremental backup) 还原的考虑 如果是完整备份的话.若硬件出问题导致系统损毁时,只要将完整备份拿出来,整个给他倾倒回去硬盘, 所有事情就搞定了!有些时候 (例 ...

  4. UVa 11695 树的直径 Flight Planning

    题意: 给出一棵树,删除一条边再添加一条边,求新树的最短的直径. 分析: 因为n比较小(n ≤ 2500),所以可以枚举删除的边,分裂成两棵树,然后有这么一个结论: 合并两棵树后得到的新树的最短直径为 ...

  5. java append方法

    JAVA 中 Stringbuffer 有append()方法  Stringbuffer其实是动态字符串数组  append()是往动态字符串数组添加,跟“xxxx”+“yyyy”相当那个‘+’号  ...

  6. python week08 并发编程之多线程--实践部分

    一. threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.pytho ...

  7. Frequent values(ST)

    描述 You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to ...

  8. C语言知识点(4)

    一.while.    dowhile. 1.while while (表达式) { 语句: … 语句: } 2.while do { printf(“%d/n,I);…}while (i<=1 ...

  9. DS博客作业-05--树

    1.本周学习总结  1.1思维导图  1.2学习体会 1.课堂上的知识也很难听懂,打代码就更难听懂了,真的需要不断练习代码. 2.在学习本章的内容中,一开始只是理解了概念,在真正做题中,一点思路都没有 ...

  10. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...