原题链接:http://poj.org/problem?id=3268

Silver Cow Party
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 15545   Accepted: 7053

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

题意

有一只牛举办派对,其他的牛去参加,牛都会走最短路,并且派对结束还要回到自己家里。问哪头牛走的路径最长,输出最长路径。

题解

就跑两边spfa,正着反着跑两次。然后就搞定了。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
int n,m,x;
void spfa(int s,vector<edge> G[],int d[]) {
fill(d, d + n + , INF);
que.push(node(s, ));
d[s] = ;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = d[u] + G[u][i].cost;
if (t < d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
} vector<edge> G[MAX_N],rG[MAX_N];
int d[MAX_N],rd[MAX_N];
int main() {
scanf("%d%d%d", &n, &m, &x);
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
rG[v].push_back(edge(u, c));
}
spfa(x, G, d);
while (que.size())que.pop();
spfa(x, rG, rd);
int ans = ;
for (int i = ; i <= n; i++)ans = max(ans, d[i] + rd[i]);
cout<<ans<<endl;
return ;
}

POJ 3268 Silver Cow Party 最短路的更多相关文章

  1. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  2. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  3. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  4. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  5. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  6. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  7. poj 3268 Silver Cow Party(最短路)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17017   Accepted: 7767 ...

  8. POJ - 3268 Silver Cow Party SPFA+SLF优化 单源起点终点最短路

    Silver Cow Party One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to ...

  9. POJ 3268 Silver Cow Party 单向最短路

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22864   Accepted: 1044 ...

随机推荐

  1. zookeeper伪集群(一)

    Zookeeper的安装和配置十分简单, 既可以配置成单机模式, 也可以配置成伪集群模式.集群模式. 本人将对伪集群.集群进行重点介绍: 铺垫: 1.集群必须是奇数(2N+1),伪集群和集群一致. 2 ...

  2. GoF23种设计模式之行为型模式之命令模式

    一.概述 将一个请求封装为一个对象,从而可以使用不同的请求对客户端进行参数化.对请求排队或记录请求日志,以及支持撤销的操作. 二.适用性 1.当抽象出待执行的动作以参数化某个对象的时候. 2.当需要在 ...

  3. 学习pwn的一些指导

    使用ret2libc攻击方法绕过数据执行保护 http://blog.csdn.net/linyt/article/details/43643499 格式化字符串利用小结 http://www.cnb ...

  4. SPOJ QTREE4 - Query on a tree IV 树分治

    题意: 给出一棵边带权的树,初始树上所有节点都是白色. 有两种操作: C x,改变节点x的颜色,即白变黑,黑变白 A,询问树中最远的两个白色节点的距离,这两个白色节点可以重合(此时距离为0). 分析: ...

  5. ogre3d环境配置与简单程序示例

    SDK安装以及编译 1.下载SDK,地址如下 http://www.ogre3d.org/download/sdk 2.安装SDK,直接解压到相应目录,如D:/ogreSDK 3.我用的是1.8版本, ...

  6. vs2012打开低版本项目时 出现vs2012警告未能加载包“visual c++ package 解决办法

    vs2012 打开 vs2010 项目时 提示的 错误信息. 解决办法 是下载一个 vs2012的 一个补丁包 http://www.microsoft.com/en-us/download/deta ...

  7. springboot添加外部jar包及打包

    项目中除了从pom中添加依赖包,还可以添加本地的jar包,怎么做呢? 1.在src下新建目录lib,将jar包添加到lib中 2.在pom文件里添加配置以下属性,就可以使用jar包了 <depe ...

  8. eclipse中添加svn插件

    在eclipse中使用svn查看能非常方便的对代码进行查看和更新提交操作,能及时知道代码的更新状态. 在eclipse中如果要使用svn,只能使用svn插件的方式进行. 插件地址:http://sub ...

  9. 记账APP市场分析

    文/欧小慧(简书作者)原文链接:http://www.jianshu.com/p/281fcdce3baa著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 一.市场环境 1.理财记账类用 ...

  10. iOS学习笔记49-Swift(九)访问控制

    一.Swift的访问控制 Swift中的访问控制模型基于模块和源文件这两个概念 模块指的是Framework或App bundle.在Swift中,可以用import关键字引入自己的工程. 源文件指的 ...