原题链接:http://poj.org/problem?id=3268

Silver Cow Party
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 15545   Accepted: 7053

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

题意

有一只牛举办派对,其他的牛去参加,牛都会走最短路,并且派对结束还要回到自己家里。问哪头牛走的路径最长,输出最长路径。

题解

就跑两边spfa,正着反着跑两次。然后就搞定了。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
int n,m,x;
void spfa(int s,vector<edge> G[],int d[]) {
fill(d, d + n + , INF);
que.push(node(s, ));
d[s] = ;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = d[u] + G[u][i].cost;
if (t < d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
} vector<edge> G[MAX_N],rG[MAX_N];
int d[MAX_N],rd[MAX_N];
int main() {
scanf("%d%d%d", &n, &m, &x);
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
rG[v].push_back(edge(u, c));
}
spfa(x, G, d);
while (que.size())que.pop();
spfa(x, rG, rd);
int ans = ;
for (int i = ; i <= n; i++)ans = max(ans, d[i] + rd[i]);
cout<<ans<<endl;
return ;
}

POJ 3268 Silver Cow Party 最短路的更多相关文章

  1. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  2. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  3. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  4. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  5. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  6. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  7. poj 3268 Silver Cow Party(最短路)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17017   Accepted: 7767 ...

  8. POJ - 3268 Silver Cow Party SPFA+SLF优化 单源起点终点最短路

    Silver Cow Party One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to ...

  9. POJ 3268 Silver Cow Party 单向最短路

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22864   Accepted: 1044 ...

随机推荐

  1. Hessian知识学习总结(二)——Hessian的helloworld

    一.下载Hessian 可在hessian官网http://hessian.caucho.com/ 或者http://download.csdn.net/detail/wodediqizhang/95 ...

  2. python之绝对导入和相对导入

    绝对导入 import sys, os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(BASE_DIR) ...

  3. AOP面向切面编程笔记

    1.AOP概念:Aspect Oriented Programming 面向切面编程 2.作用:本质上来说是一种简化代码的方式 继承机制 封装方法 动态代理 …… 3.情景举例 ①数学计算器接口[Ma ...

  4. PHP函数参数传递(相对于C++的值传递和引用传递)

    学语言学得比较多了,今天突然想PHP函数传递,对于简单类型(基本变量类型)和复杂类型(类)在函数参数传递时,有没有区别呢,今天测试了下: 代码如下: <?php function test($a ...

  5. 简单检测CDN链接是否有效

    CDN链接经常是使用的.但是,CDN链接挂了怎么办,因此,就要调用使用本站点的库,那么怎么实现呢? 检测CDN的jquery链接是否有效(这种方法比较简单) <script src=" ...

  6. socket编程了解

    Socket 编程 Socket通讯原理描述: 套接字是为特定网络协议(例如TCP/IP,ICMP/IP,UDP/IP等)套件对上的网络应用程序提供者提供当前可移植标准的对象.它们允许程序接受并进行连 ...

  7. 面向对象——property

    1.property特性 property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值 将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉到name是执行了一 ...

  8. [转]查看Linux版本信息

    一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@S-CentOS home]# cat /proc/version Linux version 2.6 ...

  9. 【Luogu】P2515软件安装(树形DP)

    题目链接 这么水的题我一遍没A,而且前两次提交都只有十分.气死我了.本来我的博客拒收水题来着. Tarjan缩点之后跑树形DP即可. #include<cstdio> #include&l ...

  10. C# Settings.settings的用处

    1.定义 在Settings.settings文件中定义配置字段.把作用范围定义为:User则运行时可更改,Applicatiion则运行时不可更改.可以使用数据网格视图,很方便: 2.读取配置值 t ...