描述

有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟。

由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小。

小Hi总共会有m次询问,你能帮助他解决这个问题吗?

假设3个小朋友接水的时间分别是2,3,4。如果他们依次接水,第一位小朋友等待加接水的时间是2,第二位小朋友是5,第三位小朋友是9。时间总和是16。

输入

第一行一个数T(T<=10),表示数据组数

对于每一组数据:

第一行两个数n,m(1<=n,m<=20,000)

第二行n个数a1...an,表示每个小朋友接水所需时间(ai<=20,000)

接下来m行,每行两个数l和r

输出

对于每次询问,输出一行一个整数,表示答案。

样例输入

1
4 2
1 2 3 4
1 2
2 4

样例输出

4
16

思路:贪心可知,时间小的在前。但是排序是不可能的,需要更高效的方法,注意到ai<=2e5,适合用树状数组记录a[i]的个数前缀和,以及a[i]的前缀和。

可以离线,所以用莫队+树状数组,莫队的话,第一次写这中数学类型的转移,开始还有点抵触,但是拿出笔一划,公式也不难。

对于暴力的公式,即L<=i<=R的所有i的前缀和:

for(i=L;i<=R;i++)
for(j=L;j<=i;j++)
sum+=a[j];

那么现在加一个第i=x进去,则对新的 i=x,需要多累加前缀:

for(j=L;j<=x;j++)
sum+=a[j];

对于后面的i>=x,都需要累加一个j=x,即a[x]*后面的个数。

for(i=x;i<=R;i++)
for(j=L;j<=i;j++)
sum+=a[j];

然后把上面的转化为树状数组的前缀和即可。  两个树状数组,分别记录个数和累加和。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=;
ll a[maxn+],num[maxn+],cnt,B,l,r,tmp;
ll sum[maxn+];
struct in{ ll L;ll R;ll id; ll ans;}s[maxn+];
bool cmp(in x,in y){ if(x.L/B==y.L/B) return x.R/B<y.R/B; return x.L/B<y.L/B; }
bool cmp2(in x,in y){ return x.id<y.id;}
void update(){ cnt=; memset(num,,sizeof(num));memset(sum,,sizeof(sum)); }
void addnum(ll x,ll y) { while(x<=maxn){ num[x]+=y; x+=(-x)&x; } }
void addsum(ll x,ll y) { while(x<=maxn){ sum[x]+=y; x+=(-x)&x; } }
int querynum(int x){ ll res=; while(x>){ res+=num[x]; x-=(-x)&x;} return res; }
int querysum(int x){ ll res=; while(x>){ res+=sum[x]; x-=(-x)&x;} return res;}
int main()
{ ll T,n,m,i;ll tsum;
scanf("%d",&T);
while(T--){
update();
scanf("%lld%lld",&n,&m);
for(i=;i<=n;i++) scanf("%lld",&a[i]);
for(i=;i<=m;i++) s[i].id=i,scanf("%lld%lld",&s[i].L,&s[i].R);
B=sqrt(n);
sort(s+,s+m+,cmp);
l=r=; tmp=a[]; addnum(a[],); addsum(a[],a[]);
for(i=;i<=m;i++){
while(l<s[i].L){
tsum=querysum(a[l]);
tmp-=tsum;
tmp-=(querynum(maxn)-querynum(a[l]))*a[l];
addnum(a[l],-);
addsum(a[l],-a[l]);
l++;
}
while(l>s[i].L){
l--;
addnum(a[l],);
addsum(a[l],a[l]);
tsum=querysum(a[l]);
tmp+=tsum;
tmp+=(querynum(maxn)-querynum(a[l]))*a[l];
}
while(r<s[i].R){
r++;
addnum(a[r],);
addsum(a[r],a[r]);
tsum=querysum(a[r]);
tmp+=tsum;
tmp+=(querynum(maxn)-querynum(a[r]))*a[r];
}
while(r>s[i].R){
tsum=querysum(a[r]);
tmp-=tsum;
tmp-=(querynum(maxn)-querynum(a[r]))*a[r];
addnum(a[r],-);
addsum(a[r],-a[r]);
r--;
}
s[i].ans=tmp;
}
sort(s+,s+m+,cmp2);
for(i=;i<=m;i++) printf("%lld\n",s[i].ans);
}
return ;
}

HihoCoder 1488 : 排队接水(莫队+树状数组)的更多相关文章

  1. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

  2. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  3. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  4. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  5. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  6. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  7. 51nod 1290 Counting Diff Pairs | 莫队 树状数组

    51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...

  8. BZOJ 3236 莫队+树状数组

    思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...

  9. BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)

    传送门 解题思路 莫队+树状数组.把求\([a,b]\)搞成前缀和形式,剩下的比较裸吧,用\(cnt\)记一下数字出现次数.时间复杂度\(O(msqrt(n)log(n)\),莫名其妙过了. 代码 # ...

随机推荐

  1. drag-html

    <!doctype html><html><head><meta charset="UTF-8" /><title>Ca ...

  2. AngularJS的Foreach循环示例

    代码下载:https://files.cnblogs.com/files/xiandedanteng/angularJSForeach.rar 代码: <!DOCTYPE HTML PUBLIC ...

  3. C#中二进制,八进制,十六进制到十进制的相互转换

    1.十进制数字向二进制,八进制,十六进制字符串的转换,使用函数 Convert.ToString(int value, int toBase): 它可以把一个数字转换为不同进制数值的字符串格式,其中t ...

  4. visual c++ 2013进行MySQL编程(ODBC) -- (一) 套装安装

    最近写了有些技术类文章了,只因为最近研究多了些东西,有一些项目用到了,所以自己记录一下,怕自己忘记,如果有哪位同学有自己的见解,可以邮件或者回复,技术类的探讨,不管对否,都是欢迎的. 操作之前,必须安 ...

  5. gulp是用来干什么的?(概念)

    当我们在使用gulp的时候,gulp到底用来干什么呢? 编译 sass 合并优化压缩 css 校验压缩 js 优化图片 添加文件指纹(md5) 组件化头部底部(include html) 实时自动刷新 ...

  6. sql quer

    SELECT (SELECT COUNT (sysid) FROM FwInvConsumable WHERE parentref = g.sysid AND (ns.state = 'Invento ...

  7. 深入Garbage First垃圾收集器(二)背景

    G1 GC是目前Java HotSpot虚拟机最新的垃圾收集器. 它是一种压缩型收集器,其基本原则是首先收集尽可能多的垃圾,因此被命名为"Garbage First" GC. G1 ...

  8. Autofac基本使用(转载)

    AutoFac是.net平台下的IOC容器产品,它可以管理类之间的复杂的依赖关系.在使用方面主要是register和resolve两类操作. 这篇文章用单元测试的形式列举了AutoFac的常用使用方法 ...

  9. Ajax技术实现页面无刷新跳转

    Ajax实现无刷新显示新的页面 <!DOCTYPE html> <html> <head> <script src="/jquery/jquery- ...

  10. 图像处理之opencv---加减乘除运算cvdiv

    http://chyyeng.blog.163.com/blog/static/16918230201211632135456/