联合权值

题目描述

无向连通图 GG 有 nn 个点,n-1n−1 条边。点从 11 到 nn 依次编号,编号为 ii 的点的权值为 W_iWi​,每条边的长度均为 11。图上两点 (u, v)(u,v) 的距离定义为 uu 点到 vv 点的最短距离。对于图 GG 上的点对 (u, v)(u,v),若它们的距离为 22,则它们之间会产生W_v \times W_uWv​×Wu​ 的联合权值。

请问图 GG 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入输出格式

输入格式:

第一行包含 11 个整数 nn。

接下来 n-1n−1 行,每行包含 22 个用空格隔开的正整数 u,vu,v,表示编号为 uu 和编号为 vv 的点之间有边相连。

最后 11 行,包含 nn 个正整数,每两个正整数之间用一个空格隔开,其中第 ii 个整数表示图 GG 上编号为 ii 的点的权值为 W_iWi​。

输出格式:

输出共 11 行,包含 22 个整数,之间用一个空格隔开,依次为图 GG 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对1000710007取余。

输入输出样例

输入样例#1: 复制

5
1 2
2 3
3 4
4 5
1 5 2 3 10
输出样例#1: 复制

20 74

说明

本例输入的图如上所示,距离为2 的有序点对有( 1,3)(1,3) 、( 2,4)(2,4) 、( 3,1)(3,1) 、( 3,5)(3,5)、( 4,2)(4,2) 、( 5,3)(5,3)。

其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。

【数据说明】

对于30%的数据,1 < n \leq 1001<n≤100;

对于60%的数据,1 < n \leq 20001<n≤2000;

对于100%的数据,1 < n \leq 200000, 0 < W_i \leq 100001<n≤200000,0<Wi​≤10000。

保证一定存在可产生联合权值的有序点对。

在无边权的树上随意指定一个节点为根,那么我们会发现树上距离为2的节点只有两种情况:

1.两个节点为“祖父-孙子”

2.两个节点互为兄弟

“祖父-孙子”这种情况比较好解决,在dfs遍历树的时候不仅仅传递父亲(f),还把祖父(g)一起传递

那么联合权值就为w[r]*w[g](记录总和时要乘2)

那么我们看看兄弟情况该如何解决

设一个节点r的儿子分别是son[1],son[2],son[3]...

那么他们的最大值显然是son中最大值乘上次大值

总和也很好搞,记录一下son中w总和,平方一下,再减去son[i]与son[i](自己配自己)这样不合法的情况即可

这些都是可以在dfs时顺道完成的

所以我们的时间复杂度就是O(n)

#include<bits/stdc++.h>
#define MAX 200005
#define MOD 10007
using namespace std;
typedef long long ll; int n;
ll maxx,sum;
ll a[MAX],dpm[MAX],dps[MAX];
vector<int> v[MAX];
vector<ll> vv; void dfs(int pre,int x){
dpm[x]=;dps[x]=;
for(int i=;i<v[x].size();i++){
int to=v[x][i];
if(to==pre) continue;
dfs(x,to);
dpm[x]=max(dpm[x],a[to]);
maxx=max(maxx,a[x]*dpm[to]);
dps[x]+=a[to];
dps[x]%=MOD;
sum+=a[x]*dps[to]*2ll;
sum%=MOD;
}
vv.clear();
for(int i=;i<v[x].size();i++){
int to=v[x][i];
if(to==pre) continue;
vv.push_back(a[to]);
sum+=a[to]*(dps[x]-a[to]+MOD);
sum%=MOD;
}
if(vv.size()>){
sort(vv.begin(),vv.end());
maxx=max(maxx,vv[vv.size()-]*vv[vv.size()-]);
}
}
int main()
{
int t,i,j;
int x,y;
scanf("%d",&n);
for(i=;i<n;i++){
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
for(i=;i<=n;i++){
scanf("%lld",&a[i]);
}
maxx=;sum=;
dfs(-,);
printf("%lld %lld\n",maxx,sum);
return ;
}

NOIP2014提高组 联合权值(距离为2的树形dp)的更多相关文章

  1. 【学术篇】luogu1351 [NOIP2014提高组] 联合权值

    一道提高组的题..... 传送门:题目在这里.... 现在都懒得更自己的blog了,怕是太颓废了_ (:з」∠) _ 好久没做题了,手都生了.(好吧其实是做题方面手太生了) 这题我都不想讲了,把代码一 ...

  2. [NOIP2014提高组]联合权值

    题目:洛谷P1351.Vijos P1906.codevs3728.UOJ#16. 题目大意:有一个无向连通图,有n个点n-1条边,每个点有一个权值$W_i$,每条边长度为1.规定两个距离为2的点i和 ...

  3. [NOIp2014] luogu P1351 联合权值

    哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111 ...

  4. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  6. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

  7. 【NOIP2014提高组】联合权值

    https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...

  8. 题解【luoguP1351 NOIp提高组2014 联合权值】

    题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...

  9. NOIP 提高组 2014 联合权值(图论???)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...

随机推荐

  1. 为什么Java中的字符串是不可变的?

    原文链接:https://www.programcreek.com/2013/04/why-string-is-immutable-in-java/ java字符串是不可变的.不可变类只是一个不能修改 ...

  2. 【python】使用python发送文本内容邮件

    下面提供了一个使用python做的发送文本内容的邮件代码,能够在邮件内容中设置文字颜色,大小,换行等功能. #auther by zls #_*_coding:utf-8_*_ import sys ...

  3. PAT 天梯赛 L3-008. 喊山 【BFS】

    题目链接 https://www.patest.cn/contests/gplt/L3-008 思路 因为 每个山头 最多有两个 能听到它的 临近山头 那么 我们就可以 给每个 山头 都 分配 最多两 ...

  4. 跟我一起学Git (十) Patches【转】

    本文转载自:http://cs-cjl.com/2014/05/05/learn_git_with_me_10 Git实现了以下三条用于交换patch的命令: git format-patch 用于创 ...

  5. python把源代码打包成.exe文件

    1.在windows命令行把当前文件夹用cd命令切换到源代码所在文件夹. 2.输入命令:pyinstaller -w -F main.py

  6. iOS开发 - 如何跳到系统设置里的各种设置界面

    在iOS开发中,有时会有跳转系统设置界面的需求,例如提示用户打开蓝牙或者WIFI,提醒用户打开推送或者位置权限等.在iOS6之后,第三方应用需要跳转系统设置界面,需要在URL type中添加一个pre ...

  7. logback备注

    <?xmlversion="1.0"encoding="UTF-8"?> <!-- <configuration>包含的属性 sc ...

  8. 在你的网站中使用 AdSense广告

    下面介绍了如何使用Google的AdSense来为你的网站设置广告.基本内容包括: 创建一个AdSense账号,你必须18岁以上,有一个Google账号以及地址 你的网站必须已经被激活,并且你的网站内 ...

  9. PHP中调用接口

    引用:http://zhidao.baidu.com/question/454935450.html&__bd_tkn__=67bd5d3a742a8b244e09a86fb8b824aa95 ...

  10. L85

    Surgical Never Events Happen Nevertheless Surgeons call them "never events", because they ...