Description

Prof. Tigris is the head of an archaeological team who is currently in charge of an excavation in a site of ancient relics.        This site contains relics of a village where civilization once flourished. One night, examining a writing record, you find some text meaningful to you. It reads as follows.        “Our village is of glory and harmony. Our relationships are constructed in such a way that everyone except the village headman has exactly one direct boss and nobody will be the boss of himself, the boss of boss of himself, etc. Everyone expect the headman is considered as his boss’s subordinate. We call it relationship configuration. The village headman is at level 0, his subordinates are at level 1, and his subordinates’ subordinates are at level 2, etc. Our relationship configuration is harmonious because all people at same level have the same number of subordinates. Therefore our relationship is …”        The record ends here. Prof. Tigris now wonder how many different harmonious relationship configurations can exist. He only cares about the holistic shape of configuration, so two configurations are considered identical if and only if there’s a bijection of n people that transforms one configuration into another one.        Please see the illustrations below for explanation when n = 2 and n = 4.       The result might be very large, so you should take module operation with modules 10 9 +7 before print your answer.      
              

Input

There are several test cases.        For each test case there is a single line containing only one integer n (1 ≤ n ≤ 1000).        Input is terminated by EOF.      
              

Output

For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is the desired answer.      
              

Sample Input

1 2 3 40 50 600 700
              

Sample Output

Case 1: 1
Case 2: 1
Case 3: 2
Case 4: 924
Case 5: 1998
Case 6: 315478277
Case 7: 825219749
 
 
这个题目可以这样考虑,对于k个节点的这种树,可以先去掉根节点,于是就是若干个这样的树组合而成。自然,这样就能想到,只要剩下的k-1个结点能构成若干个满足条件的树,k个节点便能构成一个满足条件的树。即,当k-1是某个i的倍数时,k的满足条件的树的个数就要加上i的满足条件的树的个数。当然,初始化所有个数全部是0;
 
 
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define N 1000000007 using namespace std; int ans[1005];
int n; void qt ()
{
memset (ans, 0, sizeof (ans));
ans[1] = 1;
for (int i = 2; i <= 1000; ++i)
{
for (int j = 1; j < i; ++j)
{
if ((i-1) % j == 0)
ans[i] = (ans[i] + ans[j]) % N;
}
}
} int main()
{
//freopen ("test.txt", "r", stdin);
qt ();
int times = 1;
while (scanf ("%d", &n) != EOF)
{
printf ("Case %d: %d\n", times++, ans[n]);
}
return 0;
}

ACM学习历程——HDU4472 Count(数学递推) (12年长春区域赛)的更多相关文章

  1. ACM学习历程—HDU5396 Expression(递推 && 计数)

    Problem Description Teacher Mai has n numbers a1,a2,⋯,an and n−1 operators("+", "-&qu ...

  2. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  3. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

  4. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  5. 2015年ACM长春区域赛比赛感悟

    距离长春区域赛结束已经4天了,是时候整理一下这次比赛的点点滴滴了. 也是在比赛前一周才得到通知要我参加长春区域赛,当时也是既兴奋又感到有很大的压力,毕竟我的第一场比赛就是区域赛水平,还是很有挑战性的. ...

  6. ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)

    Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...

  7. ACM学习历程—UESTC 1217 The Battle of Chibi(递推 && 树状数组)(2015CCPC C)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1217 题目大意就是求一个序列里面长度为m的递增子序列的个数. 首先可以列出一个递推式p(len, i) =  ...

  8. ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)

    Description A sequence consisting of one digit, the number 1 is initially written into a computer. A ...

  9. ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)

    Description "Well, it seems the first problem is too easy. I will let you know how foolish you ...

随机推荐

  1. 【转】AngularJs 弹出框 model(模态框)

    原文转至 http://blog.csdn.net/violet_day/article/details/17170585 $modal是一个可以迅速创建模态窗口的服务,创建部分页,控制器,并关联他们 ...

  2. HDU 2473 Junk-Mail Filter 删点并查集

    题目来源:pid=2473">HDU 2473 Junk-Mail Filter 题意:2中操作 M x, y 将x,y 合并到一个集合 S x 将x从所在的集合去掉 自己成为一个集合 ...

  3. mac下spark单机环境配置笔记

    1.安装scala 从http://www.scala-lang.org下载scala-2.11.7.tgz并解压缩 将解压缩的文件夹用mv指令移动到/usr/local/share mv [scal ...

  4. ifndef/define/endif 和 #ifdef 、#if 作用和用法

    为了能简单的看看某些linux内核源码,复习了一下c语音,今天汇总了一下关于宏定义的相关内容: 一.ifndef/define/endif用法: .h文件,如下: #ifndef XX_H #defi ...

  5. 【BZOJ4240】有趣的家庭菜园 树状数组+贪心

    [BZOJ4240]有趣的家庭菜园 Description 对家庭菜园有兴趣的JOI君每年在自家的田地中种植一种叫做IOI草的植物.JOI君的田地沿东西方向被划分为N个区域,由西到东标号为1~N.IO ...

  6. EasyNVR如何实现跨域鉴权

    EasyNVR提供简单的登录鉴权,客户端通过用户名密码登录成功后,服务端返回认证token的cookie, 后续的接口访问, 服务端从cookie读取token进行校验. 但是, 在与客户系统集成时, ...

  7. 九度OJ 1080:进制转换 (进制转换)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4583 解决:1076 题目描述: 将M进制的数X转换为N进制的数输出. 输入: 输入的第一行包括两个整数:M和N(2<=M,N< ...

  8. WePY根据环境变量来改变运行时的参数

    WePY根据环境变量来改变运行时的参数 · Tencent/wepy Wiki https://github.com/Tencent/wepy/wiki/WePY%E6%A0%B9%E6%8D%AE% ...

  9. mysql系列之6.mysql主从同步

    普通文件的数据同步 nfs: 网络文件共享 samba: 共享数据 定时任务或守护进程结合 rsync.scp inotify(sersync)+rsync 触发式实时数据同步 ftp数据同步 ssh ...

  10. Java中的迭代迭代器Iterator与枚举器Enumeration

    Iterator 和 Enumeration区别 Iterator 和 Eumberation都是Collection集合的遍历接口,我们先看下他们的源码接口 package java.util; p ...