【BZOJ 3620】似乎在梦中见过的样子
题目
(夢の中で逢った、ような……)
「Madoka,不要相信 QB!」伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约。
这是 Modoka 的一个噩梦,也同时是上个轮回中所发生的事。为了使这一次 Madoka 不再与 QB 签订契约,Homura 决定在刚到学校的第一天就解决 QB。然而,QB 也是有许多替身的(但在第八话中的剧情显示它也有可能是无限重生的),不过,意志坚定的 Homura 是不会放弃的——她决定消灭所有可能是 QB 的东西。现在,她已感受到附近的状态,并且把它转化为一个长度为 \(n\) 的字符串交给了学 OI 的你。
现在你从她的话中知道,所有形似于 \(A+B+A\) 的字串都是 QB 或它的替身,且 \(|A|\ge k,|B|\ge 1\) (位置不同其他性质相同的子串算不同子串,位置相同但拆分不同的子串算同一子串),然后你必须尽快告诉 Homura 这个答案——QB 以及它的替身的数量。
\(n\le 1.5\times 10^4, k\le100\)。
注:本题小常数\(O(n^2)\)可过。
Homura不是有回溯时间的能力么。
分析
这个\(A+B+A\)的定义和KMP中的next
数组太像了。
我们枚举左端点,先假设我们要判断\([1,r]\)是否合法。
若当前的next
值留不出\(B\)的位置,我们需要缩小范围,因为next
数组是最长的相同前后缀的长度,而我们要缩小它。
显然的,若\(\rm next[r-1] = p\),则代表\([1,p]=[r-p,r]\),且任意的相同前缀后缀的长度都不会大于这个\(p\)。
我们考虑若有\(q<p,[1,q]=[r-q,r]\),则有\([1,q]=[p-q,p]\),所以问题等价于找\([1,p]\)之间的最长的相同前后缀,为最大的\(q\)(因为我们要让\(|A|\ge k\))。
规模成功缩小,只要找到一个留的出\(B\)且\(|A|\ge k\)的一个答案即可统计。
然而,我们发现这样做,时间复杂度是要到\(O(n^3)\)的。
我们只要记录以下满足\(|A|\ge k\)的最小的点,然后直接用就可以了。
时间复杂度\(O(n^2)\)。
伪代码
& \mathbf{Input} :\text{字符串S}\\
& \mathbf{Output} :\text{返回[0,0],[0,1]... [0,|S|]中有几个这样的子串,并处理next数组}\\
\\
1 &\ \mathbf{Function} \;\rm GetNext(S) \;\{ \\
2 &\ \rm \quad j := -1,\; ans := 0 \\
3 &\ \rm \quad \text{For i in [1,n]} \\
4 &\ \rm \quad \quad v := j \\
5 &\ \rm \quad \quad if \; j < k \\
6 &\ \rm \quad \quad \quad v := \infty \\
7 &\ \rm \quad \quad if\; j \ge 0 \\
8 &\ \rm \quad \quad \quad last[i] := min(last[j],\;v) \\
9 &\ \rm \quad \quad else \\
10 &\ \rm \quad \quad \quad last[i] := v \\
11 &\ \rm \quad \quad \text{if } i \le (i - 1) \div 2 \\
12 &\ \rm \quad \quad \quad ans := ans + 1\\
13 &\ \rm \quad \quad While\; j \ge 0 \text{ and S[i]}\not =S[j] \\
14 &\ \rm \quad \quad \quad j := next[j] \\
15 &\ \rm \quad \quad j := j + 1 \\
16 &\ \rm \quad \quad next[i + 1] := j \\
17 &\ \rm \quad return\;ans\\
18 &\ \} \\
\end{split}
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad
\]
C++代码
#include <bits/stdc++.h>
using std::cin;
using std::cout;
const int MAXN = 2e4 + 7;
const int inf = 0x3f3f3f3f;
int k;
int getnext(std::string s) {
static int nxt[MAXN], last[MAXN];
int ans = 0;
nxt[0] = -1;
for(int i = 0, j = -1; i <= s.length(); i++) {
int v = (j >= k ? j : inf);
last[i] = (j >= 0 ? std::min(last[j], v) : v);
ans += (last[i] <= (i - 1) / 2);
while(j >= 0 && s[j] != s[i]) j = nxt[j];
nxt[i + 1] = ++j;
}
return ans;
}
int main() {
int ans = 0;
std::string s;
cin >> s >> k;
for(int i = 0; i < s.length(); i++) {
ans += getnext(s.substr(i));
}
cout << ans << std::endl;
return 0;
}
拓展
NOI 2014 动物园
【BZOJ 3620】似乎在梦中见过的样子的更多相关文章
- [BZOJ 3620] 似乎在梦中见过的样子 【KMP】
题目链接:BZOJ - 3620 题目分析 这道题使用 KMP 做 O(n^2) 的暴力就能过. 首先,我们依次枚举字串左端点 l ,然后从这个左端点开始向后做一次 KMP. 然后我们枚举右端点 r ...
- bzoj 3620 似乎在梦中见过的样子(KMP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3620 [题意] 给定一个字符串,统计有多少形如A+B+A的子串,要求A>=K,B ...
- bzoj 3620: 似乎在梦中见过的样子
Description "Madoka,不要相信 QB!"伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个噩梦,也同时是上个轮回 ...
- BZOJ.3620.似乎在梦中见过的样子(KMP)
题目链接 /* 896kb 6816ms A+B+A是KMP的形式,于是固定左端点,对于每个位置i,若fail[i]所能到的点k中(k=fail[fail[fail[...]]]),有满足len(l~ ...
- BZOJ 3620: 似乎在梦中见过的样子 [KMP 暴力]
和我签订契约,成为魔法少女吧 题意:求所有形似于A+B+A 的子串的数量 , 且len(A)>=k,len(B)>=1 位置不同其他性质相同的子串算不同子串,位置相同但拆分不同的子串算同一 ...
- 【BZOJ 3620】 3620: 似乎在梦中见过的样子 (KMP)
3620: 似乎在梦中见过的样子 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 755 Solved: 445 Description “Madok ...
- BZOJ 3620: 似乎在梦中见过的样子
似乎在梦中见过的样子.... 一道水题调了这么久,还半天想不出来怎么 T 的...佩服自己(果然蒟蒻) 这题想想 KMP 但是半天没思路瞟了一眼题解发现暴力枚举起始点,然后 KMP 如图: O( n2 ...
- 【kmp】似乎在梦中见过的样子
参考博客: BZOJ 3620: 似乎在梦中见过的样子 [KMP]似乎在梦中见过的样子 题目描述 「Madoka,不要相信QB!」伴随着Homura的失望地喊叫,Madoka与QB签订了契约. 这是M ...
- 【BZOJ3620】似乎在梦中见过的样子 KMP
[BZOJ3620]似乎在梦中见过的样子 Description “Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个 ...
- BZOJ_3620_似乎在梦中见过的样子_KMP
BZOJ_3620_似乎在梦中见过的样子_KMP Description “Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka ...
随机推荐
- /usr/local/sbin/arpspoof
/usr/local/sbin/arpspoof arpspoof -t 攻击者ip地址 网关ip地址 稍等系,被攻击者机器的arp的缓存就已经变了.
- 平时对Vue的总结
1.v-bind和v-on的区别 v-bind绑定的函数是立即执行的 v-on是需要一定触发执行的 2.computed和methods的区别 computed的函数是设置属性的 methods的函数 ...
- PC:各大主板开机启动项快捷键
组装机主板 品牌笔记本 品牌台式机 主板品牌 启动按键 笔记本品牌 启动按键 台式机品牌 启动按键 华硕主板 F8 联想笔记本 F12 联想台式机 F12 技嘉主板 F12 宏基笔记本 F12 惠普台 ...
- An incomplete guide to LaTex
LATEX入门与提高.陈志杰数理学院喜闻乐见的电子书.这本电子书由于是图片版本,所以无法使用搜索功能,幸亏目录详细. LaTeX Beginner's Guide.latex使用者都是从模版开始学习, ...
- 【转】iOS学习笔记(八)——iOS网络通信http之NSURLConnection
移动互联网时代,网络通信已是手机终端必不可少的功能.我们的应用中也必不可少的使用了网络通信,增强客户端与服务器交互.这一篇提供了使用NSURLConnection实现http通信的方式. NSURLC ...
- python __getattr__ __setattr__
class Rectangle: def __init__(self): self.width = 0 self.height = 0 def __setattr__(self, key, value ...
- 深入理解计算机系统_3e 第十章家庭作业 CS:APP3e chapter 10 homework
10.6 1.若成功打开"foo.txt": -->1.1若成功打开"baz.txt": 输出"4\n" -->1.2若未能成功 ...
- java 字符串中是否有数字
http://www.cnblogs.com/zhangj95/p/4198822.html http://www.cnblogs.com/sunzn/archive/2013/07/12/31865 ...
- DOTA自走棋卡牌及搭配阵容
这个游戏其实就根炉石jjc和A牌轮抽一样,前期要找着质量牌抓,保证你至少不漏.根据你的需求补一些你不会上场的阵容组件,最后根据你的组件和核心紫卡来哪张来决定打什么.另外也要考虑场上另外几家,如果有一家 ...
- 黑马基础阶段测试题:创建Phone(手机)类,Phone类中包含以下内容:
package com.swift; public class Phone { private String pinpai; private int dianliang; public String ...