题目描述

输入

输出

样例输入

3
2 1
3 2
5 1

样例输出

8
6
75


题解

语文题+数论+dp

花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi(1)=0。

要求的就是mu值为1的数的phi值之和、所有mu值为-1的phi值之和、以及所有mu值为0的phi值之和。

先只考虑前两种,此时无论质因子有多少个,能够使用的只有1个。如果p不是2,那么就有两种情况:使用和不使用。使用的话,素数个数+1,也就是mu变为相反数。

又因为phi是积性函数,所以之前的phi的和乘上p-1就是新得到的phi值和。

用一个类似于dp的思想求出这两个答案,最后由于∑phi(d)(d|m)=m,那么三种答案之和应该为m-1(因为题目中说1不算做约数),所以m-1减去前两种即可得到第三种。

处理ans1和ans2的时候应该先把phi1当作1处理,然后再减掉。

#include <cstdio>
#include <algorithm>
#define mod 10000
using namespace std;
int pow(int x , int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int k , m = 1 , i , p , e , ans1 = 1 , ans2 = 0 , t;
scanf("%d" , &k);
while(k -- )
{
scanf("%d%d" , &p , &e) , m = m * pow(p , e) % mod;
if(p != 2) t = ans1 , ans1 = (ans1 + ans2 * (p - 1)) % mod , ans2 = (ans2 + t * (p - 1)) % mod;
}
ans1 = (ans1 - 1 + mod) % mod;
printf("%d\n%d\n%d\n" , ans1 , ans2 , (m - ans1 - ans2 - 1 + 2 * mod) % mod);
return 0;
}

【bzoj1408】[Noi2002]Robot 数论+dp的更多相关文章

  1. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  2. BZOJ 1408: [Noi2002]Robot

    1408: [Noi2002]Robot Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 510  Solved: 344[Submit][Status][ ...

  3. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  4. [NOI2002] Robot 解题报告(数论+DP)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1408 Description 3030年,Macsy正在火星部署一批机器人. 第1秒,他 ...

  5. 【bzoj1408】 Noi2002—Robot

    http://www.lydsy.com/JudgeOnline/problem.php?id=1408 (题目链接) 题意 定义了3种数,分别求这3种数的φ的和,其中φ(1)=0. Solution ...

  6. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  7. 数论+DP HDOJ 4345 Permutation

    题目传送门 题意:一个置换群,经过最少k次置换后还原.问给一个N个元素,在所有的置换群里,有多少个不同的k. 分析:这道题可以转化成:N = Σ ai ,求LCM ( ai )有多少个不同的值.比如N ...

  8. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  9. HDU 5656 CA Loves GCD (数论DP)

    CA Loves GCD 题目链接: http://acm.hust.edu.cn/vjudge/contest/123316#problem/B Description CA is a fine c ...

随机推荐

  1. POJ 3057 Evacuation(二分匹配)

    分析: 这是一个时间和门的二元组(t,d)和人p匹配的问题,当我们固定d0时,(t,d0)匹配的人数和t具有单调性. t增加看成是多增加了边就行了,所以bfs处理出p到每个d的最短时间,然后把(t,d ...

  2. 【BZOJ2002】[HNOI2010] 弹飞绵羊(大力分块)

    点此看题面 大致题意: 有\(n\)个弹力装置,当到达第\(i\)个装置时,会被弹到第\(i+k_i\)个装置,若不存在第\(i+k_i\)个装置,就会被弹飞.有两种操作,一种操作是将\(k_x\)改 ...

  3. Java中ArrayList的对象引用问题

    前言事件起因是由于同事使用ArrayList的带参构造方法进行ArrayList对象复制,修改新的ArrayList对象中的元素(对象)的成员变量时也会修改原ArrayList中的元素(对象)的成员变 ...

  4. Cannot read property 'tap' of undefined

    E:\vue-project\vue-element-admin-master>npm run build:prod vue-element-admin@3.8.1 build:prod E:\ ...

  5. es6中的promise解读

    目录 什么是promise? promise的优点 回调地狱问题  Promise的三种状态 一个简单的promise promise中的then 利用promise解决回调地狱 promise的链式 ...

  6. Symmetric Difference-freecodecamp算法题目

    Symmetric Difference 1.要求 创建一个函数,接受两个或多个数组,返回所给数组的对等差分(symmetric difference) 例子:给出两个集合 (如集合 A = {1, ...

  7. Log错误日志级别

    日志记录器(Logger)的级别顺序:     分为OFF.FATAL.ERROR.WARN.INFO.DEBUG.ALL或者您定义的级别.Log4j建议只使用四个级别,优先级 从高到低分别是 ERR ...

  8. Java中的finally

    基础用法: int f1() { try{ return 1; }finally { System.out.println("finall执行"); } } @Test publi ...

  9. jsp--提交表单→插入数据库→成功后返回提示信息

    <%@ page language="java" import="java.util.*,java.sql.*" pageEncoding="u ...

  10. node实现一个简单的聊天室(认识一下socket)

    边学边理解node的高深,今天写了一个聊天室的demo,很简单,认识一下socket node服务端代码 var express = require('express'); var app = exp ...