python 7 dict和set
dict
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]
给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。
第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。
dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。
你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。
把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:
>>> d['Adam'] = 67
>>> d['Adam']
67
由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88
如果key不存在,dict就会报错:
>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'
要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:
>>> 'Thomas' in d
False
二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
注意:返回None的时候Python的交互式命令行不显示结果。
要删除一个key,用pop(key)方法,对应的value也会从dict中删除:
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。
和list比较,dict有以下几个特点:
- 查找和插入的速度极快,不会随着key的增加而变慢;
- 需要占用大量的内存,内存浪费多。
而list相反:
- 查找和插入的时间随着元素的增加而增加;
- 占用空间小,浪费内存很少。
so! dict是用空间来换取时间的一种方法。
dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。
这是因为dict根据key来计算value的存储位置,
如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。
要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。
而list是可变的,就不能作为key:
>>> key = [1, 2, 3] #list 就是不行
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
set
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3]) #先用list [ ] 再来 ()变为 set
>>> s
{1, 2, 3}
注意,传入的参数[1, 2, 3]是一个list, 而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}
通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}
通过remove(key)方法可以删除元素:
>>> s.remove(4)
>>> s
{1, 2, 3}
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,
也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。
再议不可变对象
上面我们讲了,str是不变对象,而list是可变对象。
对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
而对于不可变对象,比如str,对str进行操作呢:
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?
我们先把代码改成下面这样:
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc':
当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:
所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
小结
使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。
tuple虽然是不变对象,但试试把(1, 2, 3)和(1, [2, 3])放入dict或set中,并解释结果。
参考源码
python 7 dict和set的更多相关文章
- Python中dict的特点、更新dict、遍历dict
dict的第一个特点是查找速度快,无论dict有10个元素还是10万个元素,查找速度都一样.而list的查找速度随着元素增加而逐渐下降. 不过dict的查找速度快不是没有代价的,dict的缺点是占用内 ...
- Python中dict详解
from:http://www.cnblogs.com/yangyongzhi/archive/2012/09/17/2688326.html Python中dict详解 python3.0以上,pr ...
- python 字典 dict 该注意的一些操作
在用python处理dict 的时候,有几个该注意的地方,这里跟大家提一下: 1)操作dict 时,尽量少产生新的列表对象.比如: 遍历dict的时候,如果用 dic = {"a" ...
- python字典dict的增、删、改、查操作
## python字典dict的增.删.改.查操作dict = {'age': 18, 'name': 'jin', 'sex': 'male', }#增# dict['heigh'] = 185 # ...
- Python 字典 dict() 函数
描述 Python 字典 dict() 函数用于创建一个新的字典,用法与 Pyhon 字典 update() 方法相似. 语法 dict() 函数函数语法: dict(key/value) 参数说明: ...
- Python 基础 Dict 和 Set 类型
python 什么是dict 例如: d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } 我们把名称称为key,对应的成绩称为value,dic就是通过key 来查找 ...
- python实现dict版图遍历
python实现dict版图遍历的示例. 代码: #_*_coding:utf_8_import sysimport osclass Graph(): def __init__(self, V, E) ...
- Python之Dict和Set类型(入门5)
转载请标明出处: http://www.cnblogs.com/why168888/p/6407905.html 本文出自:[Edwin博客园] Python之Dict和Set类型 1. Python ...
- 'dict_values' object does not support indexing, Python字典dict中由value查key
Python字典dict中由value查key 众所周知,字典dict最大的好处就是查找或插入的速度极快,并且不想列表list一样,随着key的增加越来越复杂.但是dict需要占用较大的内存空间,换句 ...
- Python的dict字典结构操作方法学习笔记
Python的dict字典结构操作方法学习笔记 这篇文章主要介绍了Python的dict字典结构操作方法学习笔记本,字典的操作是Python入门学习中的基础知识,需要的朋友可以参考下 一.字典的基本方 ...
随机推荐
- [原创]Java动态生成word文档(图文并茂)
很多情况下,软件开发者需要从数据库读取数据,然后将数据动态填充到手工预先准备好的Word模板文档里,这对于大批量生成拥有相同格式排版的正式文件非常有用,这个功能应用PageOffice的基本动态填充功 ...
- 阿里大于短信服务_异常_01_InvalidTimeStamp.Expired
一.异常信息 dm.aliyuncs.com InvalidTimeStamp.Expired Specified time stamp or date value is expired. 二.异常原 ...
- 事件驱动模式--Reactor
原文:https://www.cnblogs.com/harvyxu/p/7498763.html 1 Reactor模型 Reactor模式是处理并发I/O比较常见的一种模式,用于同步I/O,中心思 ...
- ef 多个模块,通过程序集映射entity,指定对应的repository
在Entity Framework repository下加两个方法: public virtual T GetByEntityName(object id, string EntityTypeNam ...
- poj1456 Supermarket[另类的并查集做法]
1.Supermarket(题目地址) 跟很久以前模拟的打地鼠那题一样,贪心+优先队列.这次换用并查集做法. 还是基于贪心,但这次换一种策略,先选价值最大的, 同时使其尽可能晚的被选上(因为早选会将之 ...
- 瞎写的树dfs序
这里枚举了树的DFS序来解决树上问题的多个板子,自己最好多看看. ↓改↓ ↓求↓ 点 点 ————————>>>这个就算了 点 树 简单, BIT 点 链 重点! 树 树 简单, 线 ...
- 洛谷P1220关路灯——区间DP
题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...
- C# 对象间的 深拷贝 实现
以下的这个类实现了 2个含有部分字段名字相同 的对象的 赋值拷贝. public class ShallowCopyHelper { public static voi ...
- 物联网项目开发必读 深度分析MQTT协议优缺点
物联网并不仅仅是一种网络,而是一个新的生态环境,它描述的本质是越来越多的使用物品通过网络连接在一起并可使用单个或者多个的终端设备对它们进行各种控制和使用—当然,工业上的物联网通常连接到的石鼓传感器或者 ...
- 开源监控系统中 Zabbix 和 Nagios 哪个更好?
监控平台的话,各有优劣,但基本都可以满足需求.等达到一定监控指标后,发现,最困难的是监控项目的管理. CMDB中小规模(服务器<=1k):Zabbix大规模(1k>=服务器<=10k ...