题目大意:
  问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除。

思路:
  数位DP。
  极端情况下,每一位都是9,所以各位数字之和不超过9*18。(为了方便这里用了9*19)
  f[i][j][k][flag],表示DP到从左往右第i位时,各位数字之和为j,这个数字在模mod意义下为k。
  flag表示是否为边界情况。
  转移的时候枚举这一位上的数p。
  设当前位是cur,则转移方程为:
  f[i-1][j+p][(k*10+p)%mod][false]+=f[i][j][k][false];
  f[i-1][j+p][(k*10+p)%mod][false]+=f[i][j][k][true];(p<cur)
  f[i-1][j+p][(k*10+p)%mod][true]+=f[i][j][k][true];(p=cur)
  观察发现f的第1维只会同时用到两层,所以可以滚动数组。

 #include<cstdio>
#include<cctype>
#include<cstring>
typedef unsigned long long qword;
inline qword getint() {
register char ch;
while(!isdigit(ch=getchar()));
register qword x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const qword pow[]={1ull,10ull,100ull,1000ull,10000ull,100000ull,1000000ull,10000000ull,100000000ull,1000000000ull,10000000000ull,100000000000ull,1000000000000ull,10000000000000ull,100000000000000ull,1000000000000000ull,10000000000000000ull,100000000000000000ull,1000000000000000000ull,10000000000000000000ull};
const int SUM=*;
qword f[][SUM+][SUM][];
inline qword calc(const qword &n) {
const int len=__builtin_log10(n)+;
qword ret=;
for(register int mod=;mod<=*len;mod++) {
memset(f[len&],,sizeof f[len&]);
f[len&][][][true]=;
for(register int i=len;i;i--) {
memset(f[!(i&)],,sizeof f[!(i&)]);
const int cur=n%pow[i]/pow[i-];
for(register int j=;j<=mod;j++) {
for(register int k=;k<mod;k++) {
for(register int p=;p<;p++) {
if(j+p>mod) break;
f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][false]+=f[i&][j][k][false];
if(p<cur) f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][false]+=f[i&][j][k][true];
if(p==cur) f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][true]+=f[i&][j][k][true];
}
}
}
}
ret+=f[][mod][][false]+f[][mod][][true];
}
return ret;
}
int main() {
const qword l=getint(),r=getint();
printf("%llu\n",calc(r)-calc(l-));
return ;
}

[AHOI2009]同类分布的更多相关文章

  1. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  2. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  3. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  4. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  5. 【[AHOI2009]同类分布】

    这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...

  6. 【题解】AHOI2009同类分布

    好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...

  7. [luogu4127 AHOI2009] 同类分布 (数位dp)

    传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...

  8. 洛谷 P4127 [AHOI2009]同类分布

    题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...

  9. 【数位DP】【P4127】[AHOI2009]同类分布

    Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) ...

随机推荐

  1. C语言实现栈(顺序存储方式)

    #include <stdio.h> #include <stdlib.h> //提供malloc()原型 #include <stdbool.h> //提供tru ...

  2. 2017ACM暑期多校联合训练 - Team 6 1011 HDU 6106 Classes (容斥公式)

    题目链接 Problem Description The school set up three elective courses, assuming that these courses are A ...

  3. Perl6多线程4: Promise allof / anyof

    allof   : 所有代码块执行完成后才退出 anyof :只要有一个代码块执行完后就马上退出 要配合 await 一起用: my $p = start {say 'a'}; ;say 'b';} ...

  4. php隐藏WEBSHELL技巧

    把shell添加到网站logo图片里: cat logo.png shell.php > logo.png 在网站任意一个php文件里添加下面的最简单方法: fputs(fopen('/home ...

  5. 17 - 路径操作-shutil模块

    目录 1 路径操作 1.1 os.path模块 1.2 pathlib模块 1.2.1 目录操作 1.2.2 文件操作 1.3 os 模块 2 shutil模块 2.1 copy复制 2.2 rm删除 ...

  6. Linux内核中的队列 kfifo【转】

    转自:http://airekans.github.io/c/2015/10/12/linux-kernel-data-structure-kfifo#api 在内核中经常会有需要用到队列来传递数据的 ...

  7. localhost或127.0.0.1或192.168.1.*被转到129129.com上的问题

    系统启动里会有个httpd的apache程序在运行,自启禁用掉后.windows下有个apache文件夹,干掉就可以. 个别GHOST XP程序里面会装这种流氓程序.

  8. photoshop 安装问题

    问题:“安装程序检测到计算机重新启动操作可能处于挂起状态.建议您退出安装程序,重新启动并重试.” 解决: 1.运行 regedit 打开注册表编辑器. 2.依次展开HKEY_LOCAL_MACHINE ...

  9. C#调用mciSendString播放音频文件

    mciSendString函数是一个WinAPI,主要用来向MCI(Media Control Interface)设备发送字符串命令. 一.函数的声明如下: private static exter ...

  10. oracle客户端不需要配置tnsnames.ora文件直接连接服务器数据库

    在以前的oracle使用过程中,想要在客户端连接到服务器时,都是在客户端中的tnsnames.ora文件配置如以下内容: adb = (DESCRIPTION = (ADDRESS_LIST = (A ...