bzoj 2809: [Apio2012]dispatching -- 可并堆
2809: [Apio2012]dispatching
Time Limit: 10 Sec Memory Limit: 128 MB
Description
Input
Output
Sample Input
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
HINT
如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算4。因为派遣了 2 个忍者并且管理者的领导力为 3,
用户的满意度为 2,是可以得到的用户满意度的最大值。
Source
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 1000000007
#define ll long long
#define N 100010
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int lj[N],fro[N],to[N],cnt;
void add(int a,int b){fro[++cnt]=lj[a];to[cnt]=b;lj[a]=cnt;}
int n,sz[N],rt,fa[N],ch[N][],h[N];
ll m,c[N],l[N],sum[N],ans;
int meg(int x,int y)
{
if(!x||!y) return x+y;
if(c[x]<c[y]) swap(x,y);
ch[x][]=meg(ch[x][],y);
if(h[ch[x][]]>h[ch[x][]]) swap(ch[x][],ch[x][]);
h[x]=h[ch[x][]]+;
return x;
}
void dfs(int x)
{
sum[x]=c[x];sz[x]=;
for(int i=lj[x];i;i=fro[i])
{
dfs(to[i]);
sz[x]+=sz[to[i]];
sum[x]+=sum[to[i]];
fa[x]=meg(fa[x],fa[to[i]]);
}
while(sum[x]>m)
{
sum[x]-=c[fa[x]],sz[x]--;
fa[x]=meg(ch[fa[x]][],ch[fa[x]][]);
}
ans=max(ans,sz[x]*l[x]);
}
int main()
{
n=rd();m=rd();
int x;
for(int i=;i<=n;i++)
{
x=rd();c[i]=rd();l[i]=rd();
if(x) add(x,i);
else rt=i;
fa[i]=i;
}
dfs(rt);
printf("%lld\n",ans);
return ;
}
bzoj 2809: [Apio2012]dispatching -- 可并堆的更多相关文章
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
- BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )
枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...
- BZOJ 2809 APIO2012 dispatching Treap+启示式合并 / 可并堆
题目大意:给定一棵树,选定一棵子树中的一些点,薪水和不能超过m,求点的数量*子树根节点的领导能力的最大值 考虑对于每一个节点,我们维护一种数据结构,在当中贪心寻找薪金小的雇佣. 每一个节点暴力重建一定 ...
- BZOJ 2809: [Apio2012]dispatching [斜堆]
题意:主席树做法见上一题 我曾发过誓再也不写左偏树(期末考试前一天下午5个小时没写出棘手的操作) 于是我来写斜堆啦 从叶子往根合并,维护斜堆就行了 题目连拓扑序都给你了... 说一下斜堆的操作: 合并 ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- bzoj 2809: [Apio2012]dispatching
#include<cstdio> #include<algorithm> #define M 1000005 using namespace std; long long an ...
- BZOJ 2809: [Apio2012]dispatching(左偏树)
http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...
- 2809: [Apio2012]dispatching 可并堆 左偏树
https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...
- bzoj 2809: [Apio2012]dispatching【dfs序+主席树】
可并堆就可以,但是想复健一下主席树. 考虑枚举管理者,然后选忍者的时候在子树中贪心的从小到大选.做成dfs序就是选区间内和小于等于k的最多点.可以用主席树,查询的时候在主席树上二分即可 这里注意,为了 ...
随机推荐
- 常用的css3新特性总结
1:CSS3阴影 box-shadow的使用和技巧总结: 基本语法是{box-shadow:[inset] x-offset y-offset blur-radius spread-radiuscol ...
- koa源码阅读[2]-koa-router
koa源码阅读[2]-koa-router 第三篇,有关koa生态中比较重要的一个中间件:koa-router 第一篇:koa源码阅读-0第二篇:koa源码阅读-1-koa与koa-compose k ...
- 发行NEO的NEP-5合约代币
NEO常见的资产有三种 TOKEN (全局资产) Share (全局资产,股份 ) NEP-5 (合约代币,相当于ETH的ERC20) NEP-5 合约代码 https://github.com/AN ...
- perl6 HTTP::UserAgent (3) JSON
如果一个 URL 要求POST数据是 JSON格式的, 那我们要怎么发送数据呢? 第一种: HTTP::Request 上一篇说到, 发送 POST 数据, 可以: . $ua.post(url, % ...
- PHP代码审计学习
原文:http://paper.tuisec.win/detail/1fa2683bd1ca79c 作者:June 这是一次分享准备.自己还没有总结这个的能力,这次就当个搬运工好了~~ 0x01 工具 ...
- TreeSet之定制排序和自然排序
TreeSet的几大特点: 1.TreeSet中存储的类型必须是一致的,不能一下存int,一下又存string 2.TreeSet在遍历集合元素时,是有顺序的[从小到大](我的理解,如果存的字母,按字 ...
- 数据库连接池(c3p0与druid)
1.数据库连接池概念 其实就是一个容器(集合),存放数据库连接的容器.当系统初始化好后,容器被创建,容器中会申请一些连接对象,当用户来访问数据库时,从容器中获取连接对象,用户访问完之后,会将连接对象归 ...
- 前端html第三方登录集合,微信,微博,QQ
申请开发者账号之内的就不累赘了,网上一大堆: 说下需求,一个网页要在三类容器运行,公司app,微信自动登录,浏览器. 假设是已经申请完成各平台开发者账号. 先来简单的,微博和QQ 微博: 引入微博JS ...
- Codefroces 919D Substring(拓扑排序+DP)
题目链接:http://codeforces.com/problemset/problem/919/D 题目大意:给你一张有向图,给你每个顶点上的字母和一些边,让你找出一条路径,路径上的相同字母数最多 ...
- csu 1552(米勒拉宾素数测试+二分图匹配)
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 723 Solved: 198[Submit][Status][Web Bo ...