「清华集训2015」V
「清华集训2015」V
题目大意:
你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值。
解题思路:
观察发现,每一种修改操作都可以用一个函数 \(f(x) = \max(x+a,b)\) 来表示。
操作 1: \(f(x) = (x,0)\)。
操作 2:\(f(x)=(-x, 0)\)。
操作 \(3\):\(f(x)=-(inf,0)\)。
这东西显然满足结合律,事实上还是封闭的
=\max(x+f2a+f1a,f2b+f1a,f1b) \\
=\max(x+f1a+f2a,\max(f1a+f2b,f1b))
\]
然后每一次操作把函数当做标记打在线段树对应节点上,直接合并标记就可以做单点查询了。注意这里合并有先后顺序,显然儿子的标记的时间一定早于父亲的标记,不然就被 \(\text{pushdown}\) 了,那么只要令儿子的标记为 \(f2\) ,父亲的标记为 \(f1\) 这样合并就好了。
考虑求历史最大值,本质上是要维护每一个节点从上一次下放到当前所有时刻标记的最大值,每次下放标记的时候维护儿子的答案即可。历史最大值也看成 \(\max(x+a,b)\) 的形式维护就好了。
\]
####code
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf ((ll)(1e17))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define pii pair<int, int>
#define int ll
#define fi first
#define se second
const int N = 500005;
int a[N], n, m;
pii max(pii A, pii B){
return make_pair(max(A.fi, B.fi), max(A.se, B.se));
}
pii operator + (pii A, pii B){
pii C = make_pair(max(A.fi + B.fi, -inf), max(A.se + B.fi, B.se));
return C;
}
namespace Seg{
#define lson (u << 1)
#define rson (u << 1 | 1)
#define mid ((l + r) >> 1)
pii tag[N<<2], his[N<<2];
inline void pushdown(int u){
if(!tag[u].fi && !tag[u].se) return;
his[lson] = max(his[lson], tag[lson] + his[u]);
his[rson] = max(his[rson], tag[rson] + his[u]);
tag[lson] = tag[lson] + tag[u], tag[rson] = tag[rson] + tag[u];
tag[u] = make_pair(0ll, 0ll), his[u] = make_pair(0, 0);
}
inline void change(int u, int l, int r, int L, int R, pii x){
if(l >= L && r <= R){
tag[u] = tag[u] + x, his[u] = max(his[u], tag[u]);
return;
}
pushdown(u);
if(L <= mid) change(lson, l, mid, L, R, x);
if(mid < R) change(rson, mid + 1, r, L, R, x);
}
inline pii query(int u, int l, int r, int pos, int x){
if(l == r) return x ? his[u] : tag[u];
pushdown(u);
return pos <= mid ? query(lson, l, mid, pos, x) : query(rson, mid + 1, r, pos, x);
}
}
signed main(){
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1, op, l, r, x; i <= m; i++){
read(op);
if(op == 1){
read(l), read(r), read(x);
Seg::change(1, 1, n, l, r, make_pair(x, 0ll));
}
if(op == 2){
read(l), read(r), read(x);
Seg::change(1, 1, n, l, r, make_pair(-x, 0ll));
}
if(op == 3){
read(l), read(r), read(x);
Seg::change(1, 1, n, l, r, make_pair(-inf, x));
}
if(op >= 4){
read(x); pii now = Seg::query(1, 1, n, x, op == 5);
printf("%lld\n", max(a[x] + now.fi, now.se));
}
}
return 0;
}
「清华集训2015」V的更多相关文章
- 「题解」「UOJ-164」「清华集训2015」V
目录 题目 原题目 简要题目 正解 这道题题目简洁新颖,吸引读者阅读兴趣... 题目 原题目 点这里 简要题目 需要你维护长度为n的序列并支持下列操作: 区间加法: 区间赋值: 区间每个 \(a_i\ ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- Loj #2321. 「清华集训 2017」无限之环
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- [LOJ#2326]「清华集训 2017」简单数据结构
[LOJ#2326]「清华集训 2017」简单数据结构 试题描述 参加完IOI2018之后就是姚班面试.而你,由于讨厌物理.并且想成为乔布斯一样的创业家,被成功踢回贵系. 转眼,时间的指针被指向201 ...
- [LOJ#2323]「清华集训 2017」小Y和地铁
[LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...
- Loj #2331. 「清华集训 2017」某位歌姬的故事
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- [LOJ#2330]「清华集训 2017」榕树之心
[LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧 ...
随机推荐
- 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP
[题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...
- SMB MS17-010 利用(CVE-2017-0144 )
exploit-db : https://www.exploit-db.com/exploits/42315/ 该漏洞的影响版本很广泛:Microsoft Windows Windows 7/8.1/ ...
- 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)
题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...
- python笔记之BytesIO
1. 什么是BytesIO BytesIO与StringIO类似,不同的是StringIO只能存放string,BytesIO是用来存放bytes的,它提供了在内存中读写字节的能力. 即在内存中读写字 ...
- Hadoop笔记之搭建环境
Hadoop的环境搭建分为单机模式.伪分布式模式.完全分布式模式. 因为我的本本比较挫,所以就使用伪分布式模式. 安装JDK 一般Linux自带的Java运行环境都是Open JDK,我们到官网下载O ...
- udhcpc命令
要使用网络通讯,所以不可避免的要用到dhcp.理想的网络通讯方式是下面3种都要支持: 1,接入已有网络.这便要求可以作为dhcp客户端. 2,作为DHCP服务器,动态分配IP. 简单说下前2种情况. ...
- 千字短文解决工程师们关于SPI的迷糊!
串行外设接口 (SPI) 总线是一个工作在全双工模式下的同步串行数据链路.它可用于在单个主控制器和一个或多个从设备之间交换数据.其简单的实施方案只使用四条支持数据与控制的信号线(图 1): 图1:基本 ...
- PHY Linux 驱动
以太网 MAC(链路层)+PHY(物理层/RTL8201F,88E1111);集成型DM9000,RTL8139CP 由于网络数据传输量较大,不论是分开型还是集成型,通常会在MAC和PHY之间引入DM ...
- 34.Find First and Last Position of Element in Sorted Array---头条面试题、《剑指offer》38
题目链接 题目大意:找出一串升序数组中target值的起始下标和结束下标值,如果不存在则返回{-1,-1}. 解法一:用二分查找,找到数组中的target,然后找其左边和右边的target下标值.代码 ...
- 如何使用curl命令指定ip访问url
有时我们需要测试一个url,但域名并没解析,这时为了一个简单的测试而写host或去做域名解析,显然这并不高效,而有些域名甚至是正式的域名,因此我们可有使用curl命令进行测试 方法一 curl url ...