CUDA Samples: heat conduction(模拟热传导)
以下CUDA sample是分别用C++和CUDA实现的模拟热传导生成的图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第七章,各个文件内容如下:
funset.cpp:
#include "funset.hpp"
#include <random>
#include <iostream>
#include <vector>
#include <memory>
#include <string>
#include "common.hpp"
#include <opencv2/opencv.hpp>
int test_heat_conduction()
{
const int width{ 1024 }, height = width;
cv::Mat mat1(height, width, CV_8UC4), mat2(height, width, CV_8UC4);
const float speed{ 0.25f }, max_temp{ 1.f }, min_temp{0.0001f};
float elapsed_time1{ 0.f }, elapsed_time2{ 0.f }; // milliseconds
// intialize the constant data
std::unique_ptr<float[]> temp(new float[width * height]);
for (int i = 0; i < width*height; ++i) {
temp[i] = 0;
int x = i % width;
int y = i / height;
if ((x>300) && (x<600) && (y>310) && (y<601))
temp[i] = max_temp;
}
temp[width * 100 + 100] = (max_temp + min_temp) / 2;
temp[width * 700 + 100] = min_temp;
temp[width * 300 + 300] = min_temp;
temp[width * 200 + 700] = min_temp;
for (int y = 800; y < 900; ++y) {
for (int x = 400; x < 500; ++x) {
temp[x + y * width] = min_temp;
}
}
int ret = heat_conduction_cpu(mat1.data, width, height, temp.get(), speed, &elapsed_time1);
if (ret != 0) PRINT_ERROR_INFO(heat_conduction_cpu);
ret = heat_conduction_gpu(mat2.data, width, height, temp.get(), speed, &elapsed_time2);
if (ret != 0) PRINT_ERROR_INFO(heat_conduction_gpu);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
cv::Vec4b val1 = mat1.at<cv::Vec4b>(y, x);
cv::Vec4b val2 = mat2.at<cv::Vec4b>(y, x);
for (int i = 0; i < 4; ++i) {
if (val1[i] != val2[i]) {
fprintf(stderr, "their values are different at (%d, %d), i: %d, val1: %d, val2: %d\n",
x, y, i, val1[i], val2[i]);
//return -1;
}
}
}
}
std::string save_image_name{ "E:/GitCode/CUDA_Test/heat_conduction.jpg" };
cv::resize(mat2, mat2, cv::Size(width / 2, height / 2), 0.f, 0.f, 2);
cv::imwrite(save_image_name, mat2);
fprintf(stderr, "test heat conduction: cpu run time: %f ms, gpu run time: %f ms\n", elapsed_time1, elapsed_time2);
return 0;
}
heat_conduction.cpp:
#include "funset.hpp"
#include <chrono>
#include <memory>
#include <vector>
static void copy_const_kernel(float* iptr, const float* cptr, int width, int height)
{
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
int offset = x + y * width;
if (cptr[offset] != 0) iptr[offset] = cptr[offset];
}
}
}
static void blend_kernel(float* outSrc, const float* inSrc, int width, int height, float speed)
{
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
int offset = x + y * width;
int left = offset - 1;
int right = offset + 1;
if (x == 0) ++left;
if (x == width - 1) --right;
int top = offset - height;
int bottom = offset + height;
if (y == 0) top += height;
if (y == height - 1) bottom -= height;
outSrc[offset] = inSrc[offset] + speed * (inSrc[top] + inSrc[bottom] + inSrc[left] + inSrc[right] - inSrc[offset] * 4);
}
}
}
static unsigned char value(float n1, float n2, int hue)
{
if (hue > 360) hue -= 360;
else if (hue < 0) hue += 360;
if (hue < 60)
return (unsigned char)(255 * (n1 + (n2 - n1)*hue / 60));
if (hue < 180)
return (unsigned char)(255 * n2);
if (hue < 240)
return (unsigned char)(255 * (n1 + (n2 - n1)*(240 - hue) / 60));
return (unsigned char)(255 * n1);
}
static void float_to_color(unsigned char *optr, const float *outSrc, int width, int height)
{
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
int offset = x + y * width;
float l = outSrc[offset];
float s = 1;
int h = (180 + (int)(360.0f * outSrc[offset])) % 360;
float m1, m2;
if (l <= 0.5f) m2 = l * (1 + s);
else m2 = l + s - l * s;
m1 = 2 * l - m2;
optr[offset * 4 + 0] = value(m1, m2, h + 120);
optr[offset * 4 + 1] = value(m1, m2, h);
optr[offset * 4 + 2] = value(m1, m2, h - 120);
optr[offset * 4 + 3] = 255;
}
}
}
int heat_conduction_cpu(unsigned char* ptr, int width, int height, const float* src, float speed, float* elapsed_time)
{
auto start = std::chrono::steady_clock::now();
std::vector<float> inSrc(width*height, 0.f);
std::vector<float> outSrc(width*height, 0.f);
for (int i = 0; i < 90; ++i) {
copy_const_kernel(inSrc.data(), src, width, height);
blend_kernel(outSrc.data(), inSrc.data(), width, height, speed);
std::swap(inSrc, outSrc);
}
float_to_color(ptr, inSrc.data(), width, height);
auto end = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);
*elapsed_time = duration.count() * 1.0e-6;
return 0;
}
heat_conduction.cu:
#include "funset.hpp"
#include <iostream>
#include <algorithm>
#include <memory>
#include <vector>
#include <cuda_runtime.h> // For the CUDA runtime routines (prefixed with "cuda_")
#include <device_launch_parameters.h>
#include "common.hpp"
/* __global__: 函数类型限定符;在设备上运行;在主机端调用,计算能力3.2及以上可以在
设备端调用;声明的函数的返回值必须是void类型;对此类型函数的调用是异步的,即在
设备完全完成它的运行之前就返回了;对此类型函数的调用必须指定执行配置,即用于在
设备上执行函数时的grid和block的维度,以及相关的流(即插入<<< >>>运算符);
a kernel,表示此函数为内核函数(运行在GPU上的CUDA并行计算函数称为kernel(内核函
数),内核函数必须通过__global__函数类型限定符定义); */
__global__ static void copy_const_kernel(float* iptr, const float* cptr)
{
/* gridDim: 内置变量,用于描述线程网格的维度,对于所有线程块来说,这个
变量是一个常数,用来保存线程格每一维的大小,即每个线程格中线程块的数量.
一个grid最多只有二维,为dim3类型;
blockDim: 内置变量,用于说明每个block的维度与尺寸.为dim3类型,包含
了block在三个维度上的尺寸信息;对于所有线程块来说,这个变量是一个常数,
保存的是线程块中每一维的线程数量;
blockIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程块的索引;用
于说明当前thread所在的block在整个grid中的位置,blockIdx.x取值范围是
[0,gridDim.x-1],blockIdx.y取值范围是[0, gridDim.y-1].为uint3类型,
包含了一个block在grid中各个维度上的索引信息;
threadIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程索引;用于
说明当前thread在block中的位置;如果线程是一维的可获取threadIdx.x,如果
是二维的还可获取threadIdx.y,如果是三维的还可获取threadIdx.z;为uint3类
型,包含了一个thread在block中各个维度的索引信息 */
// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
if (cptr[offset] != 0) iptr[offset] = cptr[offset];
}
__global__ static void blend_kernel(float* outSrc, const float* inSrc, int width, int height, float speed)
{
// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
int left = offset - 1;
int right = offset + 1;
if (x == 0) ++left;
if (x == width - 1) --right;
int top = offset - height;
int bottom = offset + height;
if (y == 0) top += height;
if (y == height - 1) bottom -= height;
outSrc[offset] = inSrc[offset] + speed * (inSrc[top] + inSrc[bottom] + inSrc[left] + inSrc[right] - inSrc[offset] * 4);
}
/* __device__: 函数类型限定符,表明被修饰的函数在设备上执行,只能从设备上调用,
但只能在其它__device__函数或者__global__函数中调用;__device__函数不支持递归;
__device__函数的函数体内不能声明静态变量;__device__函数的参数数目是不可变化的;
不能对__device__函数取指针 */
__device__ static unsigned char value(float n1, float n2, int hue)
{
if (hue > 360) hue -= 360;
else if (hue < 0) hue += 360;
if (hue < 60)
return (unsigned char)(255 * (n1 + (n2 - n1)*hue / 60));
if (hue < 180)
return (unsigned char)(255 * n2);
if (hue < 240)
return (unsigned char)(255 * (n1 + (n2 - n1)*(240 - hue) / 60));
return (unsigned char)(255 * n1);
}
__global__ static void float_to_color(unsigned char *optr, const float *outSrc)
{
// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
float l = outSrc[offset];
float s = 1;
int h = (180 + (int)(360.0f * outSrc[offset])) % 360;
float m1, m2;
if (l <= 0.5f) m2 = l * (1 + s);
else m2 = l + s - l * s;
m1 = 2 * l - m2;
optr[offset * 4 + 0] = value(m1, m2, h + 120);
optr[offset * 4 + 1] = value(m1, m2, h);
optr[offset * 4 + 2] = value(m1, m2, h - 120);
optr[offset * 4 + 3] = 255;
}
static int heat_conduction_gpu_1(unsigned char* ptr, int width, int height, const float* src, float speed, float* elapsed_time)
{
/* cudaEvent_t: CUDA event types,结构体类型, CUDA事件,用于测量GPU在某
个任务上花费的时间,CUDA中的事件本质上是一个GPU时间戳,由于CUDA事件是在
GPU上实现的,因此它们不适于对同时包含设备代码和主机代码的混合代码计时 */
cudaEvent_t start, stop;
// cudaEventCreate: 创建一个事件对象,异步启动
cudaEventCreate(&start);
cudaEventCreate(&stop);
// cudaEventRecord: 记录一个事件,异步启动,start记录起始时间
cudaEventRecord(start, 0);
float* dev_inSrc{ nullptr };
float* dev_outSrc{ nullptr };
float* dev_constSrc{ nullptr };
unsigned char* dev_image{ nullptr };
const size_t length1{ width * height * sizeof(float) };
const size_t length2{ width * height * 4 * sizeof(unsigned char) };
// cudaMalloc: 在设备端分配内存
cudaMalloc(&dev_inSrc, length1);
cudaMalloc(&dev_outSrc, length1);
cudaMalloc(&dev_constSrc, length1);
cudaMalloc(&dev_image, length2);
/* cudaMemcpy: 在主机端和设备端拷贝数据,此函数第四个参数仅能是下面之一:
(1). cudaMemcpyHostToHost: 拷贝数据从主机端到主机端
(2). cudaMemcpyHostToDevice: 拷贝数据从主机端到设备端
(3). cudaMemcpyDeviceToHost: 拷贝数据从设备端到主机端
(4). cudaMemcpyDeviceToDevice: 拷贝数据从设备端到设备端
(5). cudaMemcpyDefault: 从指针值自动推断拷贝数据方向,需要支持
统一虚拟寻址(CUDA6.0及以上版本)
cudaMemcpy函数对于主机是同步的 */
cudaMemcpy(dev_constSrc, src, length1, cudaMemcpyHostToDevice);
const int threads_block{ 16 };
/* dim3: 基于uint3定义的内置矢量类型,相当于由3个unsigned int类型组成的
结构体,可表示一个三维数组,在定义dim3类型变量时,凡是没有赋值的元素都
会被赋予默认值1 */
dim3 blocks(width / threads_block, height / threads_block);
dim3 threads(threads_block, threads_block);
for (int i = 0; i < 90; ++i) {
copy_const_kernel << <blocks, threads >> >(dev_inSrc, dev_constSrc);
blend_kernel << <blocks, threads >> >(dev_outSrc, dev_inSrc, width, height, speed);
std::swap(dev_inSrc, dev_outSrc);
}
/* <<< >>>: 为CUDA引入的运算符,指定线程网格和线程块维度等,传递执行参
数给CUDA编译器和运行时系统,用于说明内核函数中的线程数量,以及线程是如何
组织的;尖括号中这些参数并不是传递给设备代码的参数,而是告诉运行时如何
启动设备代码,传递给设备代码本身的参数是放在圆括号中传递的,就像标准的函
数调用一样;不同计算能力的设备对线程的总数和组织方式有不同的约束;必须
先为kernel中用到的数组或变量分配好足够的空间,再调用kernel函数,否则在
GPU计算时会发生错误,例如越界等;
使用运行时API时,需要在调用的内核函数名与参数列表直接以<<<Dg,Db,Ns,S>>>
的形式设置执行配置,其中:Dg是一个dim3型变量,用于设置grid的维度和各个
维度上的尺寸.设置好Dg后,grid中将有Dg.x*Dg.y个block,Dg.z必须为1;Db是
一个dim3型变量,用于设置block的维度和各个维度上的尺寸.设置好Db后,每个
block中将有Db.x*Db.y*Db.z个thread;Ns是一个size_t型变量,指定各块为此调
用动态分配的共享存储器大小,这些动态分配的存储器可供声明为外部数组
(extern __shared__)的其他任何变量使用;Ns是一个可选参数,默认值为0;S为
cudaStream_t类型,用于设置与内核函数关联的流.S是一个可选参数,默认值0. */
float_to_color << <blocks, threads >> >(dev_image, dev_inSrc);
cudaMemcpy(ptr, dev_image, length2, cudaMemcpyDeviceToHost);
// cudaFree: 释放设备上由cudaMalloc函数分配的内存
cudaFree(dev_inSrc);
cudaFree(dev_outSrc);
cudaFree(dev_constSrc);
cudaFree(dev_image);
// cudaEventRecord: 记录一个事件,异步启动,stop记录结束时间
cudaEventRecord(stop, 0);
// cudaEventSynchronize: 事件同步,等待一个事件完成,异步启动
cudaEventSynchronize(stop);
// cudaEventElapseTime: 计算两个事件之间经历的时间,单位为毫秒,异步启动
cudaEventElapsedTime(elapsed_time, start, stop);
// cudaEventDestroy: 销毁事件对象,异步启动
cudaEventDestroy(start);
cudaEventDestroy(stop);
return 0;
}
static int heat_conduction_gpu_2(unsigned char* ptr, int width, int height, const float* src, float speed, float* elapsed_time)
{
return 0;
}
static int heat_conduction_gpu_3(unsigned char* ptr, int width, int height, const float* src, float speed, float* elapsed_time)
{
return 0;
}
int heat_conduction_gpu(unsigned char* ptr, int width, int height, const float* src, float speed, float* elapsed_time)
{
int ret{ 0 };
ret = heat_conduction_gpu_1(ptr, width, height, src, speed, elapsed_time); // 没有采用纹理内存
//ret = heat_conduction_gpu_2(ptr, width, height, src, speed, elapsed_time); // 采用一维纹理内存
//ret = heat_conduction_gpu_3(ptr, width, height, src, speed, elapsed_time); // 采用二维纹理内存
return ret;
}
生成的结果图像如下:
执行结果如下:可见使用C++和CUDA实现的结果是完全一致的:
GitHub: https://github.com/fengbingchun/CUDA_Test
CUDA Samples: heat conduction(模拟热传导)的更多相关文章
- CUDA samples 第三章 sample reference 概况
示例代码分为下列几类: 1. Simple Reference 基础CUDA示例,适用于初学者, 反应了运用CUDA和CUDA runtime APIs的一些基本概念. 2. Utilitie ...
- CUDA samples 2.3节 用CUDA示例来创建CUDA项目
2.3.1. Creating CUDA Projects for Windows 略 2.3.2 Creating CUDA Projects for Linux 默认的samples的安装路径 ...
- CUDA Samples: 获取设备属性信息
通过调用CUDA的cudaGetDeviceProperties函数可以获得指定设备的相关信息,此函数会根据GPU显卡和CUDA版本的不同得到的结果也有所差异,下面code列出了经常用到的设备信息: ...
- CUDA Samples: matrix multiplication(C = A * B)
以下CUDA sample是分别用C++和CUDA实现的两矩阵相乘运算code即C= A*B,CUDA中包含了两种核函数的实现方法,第一种方法来自于CUDA Samples\v8.0\0_Simple ...
- CUDA Samples:Vector Add
以下CUDA sample是分别用C++和CUDA实现的两向量相加操作,参考CUDA 8.0中的sample:C:\ProgramData\NVIDIA Corporation\CUDA Sample ...
- CUDA Samples: dot product(使用零拷贝内存)
以下CUDA sample是分别用C++和CUDA实现的点积运算code,CUDA包括普通实现和采用零拷贝内存实现两种,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程C ...
- CUDA Samples: Streams' usage
以下CUDA sample是分别用C++和CUDA实现的流的使用code,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第十章,各个文件内容如 ...
- CUDA Samples: Calculate Histogram(atomicAdd)
以下CUDA sample是分别用C++和CUDA实现的计算一维直方图,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第九章,各个文件内容如下 ...
- CUDA Samples: Ray Tracking
以下CUDA sample是分别用C++和CUDA实现的生成光线跟踪图像,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第六章,CUDA各实现 ...
随机推荐
- 20145301实验五 Java网络编程及安全
北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1453 指导教师:娄嘉鹏 实验日期:2016.05.06 18:30-21:30 实验名称:实验五 Java网络编程 实验内容 ...
- 20145321 《Java程序设计》第7周学习总结
20145321 <Java程序设计>第7周学习总结 教材学习内容总结 第十三章 时间与日期 13.1 认识时间与日期 1.格林威治时间(GMT) 观察太阳得来 2.世界时(UT) 3.国 ...
- 快用Visual Studio(四)- 主题 偏好与快捷键
使用$ CMD + ,打开快捷键设置窗口 使用$ CMD + SHIFT + ,切换默认配置 使用$ CMD + SHIFT + O打开搜索框搜索已配置选项 关于代码偏好设置有三种模式: 默认模式:C ...
- MR案例:链式ChainMapper
类似于Linux管道重定向机制,前一个Map的输出直接作为下一个Map的输入,形成一个流水线.设想这样一个场景:在Map阶段,数据经过mapper01和mapper02处理:在Reduce阶段,数据经 ...
- COJS:1829. [Tyvj 1728]普通平衡树
★★★ 输入文件:phs.in 输出文件:phs.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需 ...
- Spring Boot 之restful风格
步骤一:restful风格是什么? 我们知道在做web开发的过程中,method常用的值是get和post.可事实上,method值还可以是put和delete等等其他值. 既然method值如此丰富 ...
- tomcat优化方案(转)
1.内存设置(VM参数调优) (1).Windows环境下,是tomcat解压版(执行startup.bat启动tomcat) ,解决办法: 修改“%TOMCAT_HOME%\bin\catalina ...
- dp_train_f
Vasya And The Mushrooms 题目大意:有2n个格子,分成上下两行,每行n个,每个格子有蘑菇每秒的生长值(rate),小姑娘从左上角出发(time=0),每秒必须移动,而且只能移动到 ...
- git pull 分支问题
问题: 是因为本地分支与远程分支没有链接关系, 让他们建立链接关系
- python find命令、startwith命令
python的字符串有很多好用的操作,比如find,startswith命令. 这几个命令在处理配置文件的时候很有用,比如用startswith判断是否是注释行. 注意:几个函数的返回值是不同滴. 函 ...