[loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治
我们设dp[i][j]表示考虑所有价值小于等于i的物品,带了j块钱的最大吸引力。
对于ci相同的物品,我们一定是从大到小选k个物品,又发现最大的k个的价值在k变大的时候增长率是单调减的。
同时对于同样的ci,被转移和转移到的状态mod ci同余。
这些dp值也具有单调性,因此这个dp具有决策单调性。
我们用分治优化转移。负责度O(c*k*logk)
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#define maxn 305
#define maxk 50005
#define ll long long
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
ll n,k,sz[maxn],pre=,now=;
ll dp[][maxk],g[][maxk];
vector<ll> q[maxn];
bool cmp(ll a,ll b) {return a>b;}
void solve(int l,int r,int ql,int qr,int x,int SZ) {
if(l>r||ql>qr) return;
int mid=ql+qr>>,minmid=-;ll val=;
for(int i=max(l,mid-SZ);i<mid&&i<=r;i++) {
if(minmid==-||g[][i]+q[x][mid-i-]>val) {
val=g[][i]+q[x][mid-i-];minmid=i;
}
}
g[][mid]=val;
// if(minmid==-1) minmid=l;
solve(l,minmid,ql,mid-,x,SZ);solve(minmid,r,mid+,qr,x,SZ);
}
int main() {
n=read(),k=read();
for(int i=;i<=n;i++) {
int x=read(),y=read();
q[x].push_back(y);sz[x]++;
}
for(int i=;i<=;i++) {
if(!sz[i]) continue;
sort(q[i].begin(),q[i].end(),cmp);
for(int j=;j<sz[i];j++) q[i][j]+=q[i][j-];
for(int j=;j<i;j++) {
int p=j,bk=;
for(;p<=k;p+=i,bk++) g[][bk]=dp[pre][p];
solve(,bk-,,bk-,i,sz[i]);
p=j,bk=;
for(;p<=k;p+=i,bk++) dp[now][p]=max(g[][bk],g[][bk]);
}
swap(now,pre);
}
for(int i=;i<=k;i++) printf("%lld ",dp[pre][i]);
}
[loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治的更多相关文章
- LOJ6039. 「雅礼集训 2017 Day5」珠宝【决策单调性优化DP】【分治】【思维好题】
LINK 懒得搬题面 简要题意:n个物品,每个物品有一个价格和一个吸引力,问你对于\(i \in [1,k]\),花费i的价格能得到的最大吸引力 其中价格的范围很小,在\([1,300]\)范围内 思 ...
- 「雅礼集训 2017 Day5」珠宝
题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右 ...
- [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]
题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...
- @loj - 6039@ 「雅礼集训 2017 Day5」珠宝
目录 @description@ @solution@ @accpeted code@ @details@ @description@ Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠 ...
- loj #6039 「雅礼集训 2017 Day5」珠宝 分组背包 决策单调性优化
LINK:珠宝 去年在某个oj上写过这道题 当时懵懂无知wa的不省人事 终于发现这个东西原来是有决策单调性的. 可以发现是一个01背包 但是过不了 冷静分析 01背包的复杂度有下界 如果过不了说明必然 ...
- 「雅礼集训 2017 Day5」矩阵
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...
- LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...
- 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...
- 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...
随机推荐
- 【数论】数论进阶-Preknowledge
数论进阶-Preknowledge 参考资料:洛谷网校2018夏季省选基础班SX-3数论进阶课程及课件 一.整除与取整除法 1.1 定义 1.整除 \(\forall~x,y~\in~Z^+,\) 若 ...
- 【题解】征途 SDOI 2016 BZOJ 4518
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4518 首先推式子,我们用$x_i$表示第$i$段的路程,$sum$表示总路程,根据方差和平均 ...
- [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...
- ZooKeeper在线迁移
在至少有一个Leader存在的前提下,进行Zookeeper的在线增量.在线减量.在线迁移 在全过程中ZooKeeper不停止服务 注意事项 首先,当我们要从3台扩充到5台时,应保证集群不停止服务. ...
- c# 一个关于时间截断的算法取巧
场景如下: 在某一段时间内(有规律,以一个星期为最大区间),从一个时间区间中排除另外一个或者多个时间区间后,返回时间区间集合. 举例如下: //时间区间:2018-02-01~2018-02-07 / ...
- 不平衡分类学习方法 --Imbalaced_learn
最近在进行一个产品推荐课题时,由于产品的特性导致正负样本严重失衡,远远大于3:1的比例(个人认为3:1是建模时正负样本的一个临界点),这样的样本不适合直接用来建模,例如正负样本的比例达到了50:1,就 ...
- StringUtils.htmlEncode()--html标签过滤方法实现
package org.guyezhai.utils; import java.text.CharacterIterator; import java.text.StringCharacterIter ...
- 谨慎重载clone方法
本文涉及到的概念 1.浅拷贝和深拷贝 2..clone方法的作用和使用方式 3.拷贝构造器和拷贝工厂 1.浅拷贝和深拷贝 浅拷贝 一个类实现Cloneable接口,然后,该类的实例调用clone方 ...
- uefi模式下win10安装双系统ubuntu18.04LTS
自己折腾了半天,血与泪啊(难得一个可爱的周末 wwww我一定要写下来 跟这个博客几乎一模一样了 https://blog.csdn.net/xrinosvip/article/details/8042 ...
- JQuery对RadioButton和CheckButton的操作
js对RadioButton和CheckButton的操作,在网站开发中会经常遇到,而JQuery操作RadioButton和CheckButton非常便捷.小编觉得网站开发人员有必要熟练掌握.所以小 ...