Laplace分布的概率密度函数的形式是这样的:

$p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$   一般$\mu$的取值为0,所以形式如下:

$p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x \vert}{\lambda}}$

它是由两个指数函数组成的,所以又叫做双指数函数分布(double exponential distribution)

均值和方差

均值的求解,若X的概率密度函数为f(X),那么X的均值为 $E(X) = \int_{- \infty}^{+ \infty} xf(x) dx$,代入以后可以发现里面的积分函数为奇函数,所以均值为0.

方差根据$D(X) = E(X^2)-(E(X))^2$,因为后面一项为0,所以主要求前一项$E(X^2)$,$E(X^2) = \int_{- \infty}^{+ \infty} x^2f(x)dx$ 根据积分公式$\int udv = uv-vdu$进行求解,得到方差为$2{\lambda}^2$

使用pyplot画概率分布图

import matplotlib.pyplot as plt
import numpy as np
def laplace_function(x, lambda_):
return (1/(2*lambda_)) * np.e**(-1*(np.abs(x)/lambda_))
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,1) for x_ in x]
y2 = [laplace_function(x_,2) for x_ in x]
y3 = [laplace_function(x_,0.5) for x_ in x] plt.plot(x, y1, color='r', label="lambda:1")
plt.plot(x, y2, color='g', label="lambda:2")
plt.plot(x, y3, color='b', label="lambda:0.5") plt.title("Laplace distribution")
plt.legend()
plt.show()

 

使用np.random.laplace获得随机样本的值

np.random.laplace可以获得拉普拉斯分布的随机值,参数主要如下:

loc:就是上面的$\mu$,控制偏移。

scale: 就是上面的$\lambda$控制缩放。

size:  是产生数据的个数

print(np.random.laplace(0,1,10))

产生结果如下:

[-0.56017859 -2.11417277 -1.05903743  1.7220117   0.68025748 -0.10421514
-0.61471549 0.96146946 -3.40181804 -0.89675566]

下面我们产生很多数据,然后用直方图把它们画出来,可以看出来它们符合Laplace分布。

import numpy as np
laplace1 = np.random.laplace(0, 1, 10000)
laplace2 = np.random.laplace(0, 2, 10000) import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1,2, sharex=True, sharey=True)
ax1.hist(laplace1,bins=1000, label="lambda:1")
ax1.legend() ax2.hist(laplace2, bins=1000, label="lambda:2")
ax2.legend()
plt.show()

拉普拉斯(Laplace)分布的更多相关文章

  1. Laplace(拉普拉斯)先验与L1正则化

    Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...

  2. L1比L2更稀疏

    1. 简单列子: 一个损失函数L与参数x的关系表示为: 则 加上L2正则化,新的损失函数L为:(蓝线) 最优点在黄点处,x的绝对值减少了,但依然非零. 如果加上L1正则化,新的损失函数L为:(粉线) ...

  3. 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归

    最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...

  4. AI工程师基础知识100题

    100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们 ...

  5. 【sklearn朴素贝叶斯算法】高斯分布/多项式/伯努利贝叶斯算法以及代码实例

    朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向 ...

  6. 文献阅读 - MonoLoco与关于Camera Matrix的笔记

    目录 概览 HighLights Camera Intrinsic Matrix 笔记 Intrinsic Matrix Task-Error - 不确定性任务下确界的计算 输出假设的Laplace分 ...

  7. 【Deep Learning读书笔记】深度学习中的概率论

    本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...

  8. 【百奥云GS专栏】全基因组选择之模型篇

    目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. ...

  9. 【GS文献】基因组选择技术在农业动物育种中的应用

    中国农业大学等多家单位2017年合作发表在<遗传>杂志上的综述,笔记之. 作者中还有李宁院士,不胜唏嘘. 1.概述 GS的两大难题:基因组分型的成本,基因组育种值(genomic esti ...

随机推荐

  1. Android中的通信Volley

    1. Volley简介 我们平时在开发Android应用的时候不可避免地都需要用到网络技术,而多数情况下应用程序都会使用HTTP协议来发送和接收网络数据.Android系统中主要提供了两种方式来进行H ...

  2. Linux内核同步原语之原子操作【转】

    转自:http://blog.csdn.net/npy_lp/article/details/7262388 避免对同一数据的并发访问(通常由中断.对称多处理器.内核抢占等引起)称为同步. ——题记 ...

  3. 概述sysfs文件系统【转】

    转自:http://blog.csdn.net/npy_lp/article/details/78933292 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 sys ...

  4. 让R与Python共舞

    转载:http://ices01.sinaapp.com/?p=129      R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现 工具.通俗点说,R是用来做统计和画图的.R拥有自己的脚本 ...

  5. HTML+CSS小技巧

    网页标题前引入ico图标 <link rel="shortcut icon" href="img/icoTest.ico">

  6. csu 1551(线段树+DP)

    1551: Longest Increasing Subsequence Again Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 267  Solve ...

  7. gtk+学习笔记(二)

    如何创建一个按钮呢,直接贴代码把,有详细的注释. #include<gtk/gtk.h> gint data_count=; void on_button_clicked (GtkWidg ...

  8. SQL Server Connection Pooling (ADO.NET)

    SQL Server Connection Pooling (ADO.NET) Connecting to a database server typically consists of severa ...

  9. 深度扫盲JavaScript的模块化(AMD , CMD , CommonJs 和 ES6)

    原文地址 https://blog.csdn.net/haochangdi123/article/details/80408874 一.commonJS 1.内存情况 对于基本数据类型,属于复制.即会 ...

  10. linux 驱动程序 HelloWorld

    Linux驱动可以直接编译进内核,也可以以模块的形式进行加载,前者比较复杂,本文就以模块的形式加载! vi helloi_driver.c #include <linux/init.h> ...