拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识

我们所知道的结论是这样的

6 个人中至少存在3人相互认识或者相互不认识。

该定理等价于证明这6个顶点的完全图的边,用红、蓝二色任意着色,必然至少存在一个红色边三角形,或蓝色边三角形

HDU6152

给出 n 个人之间的关系,如果其中有三个人互相认识或者互相不认识,则输出 Bad Team! ,否则输出 Great Team!

当人数大于等于 6 时其结果一定是 Bad Team!

而对于 n < 6 的情况,实际上需要求图的最大团点的个数是否大于 3

 #include<cstdio>
#include<cstring>
int n;
int a[][];
int main()
{
int T,t;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(a,,sizeof(a));
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
{
scanf("%d",&t);
if(t&&n<) a[i][j]=a[j][i]=;
}
if(n>=)
{
puts("Bad Team!");
continue;
}
int f=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(a[i][j]&&a[i][k]&&a[j][k])
{
f=;
break;
}
if(f) puts("Bad Team!");
else puts("Great Team!");
}
return ;
}

图论&数学:拉姆齐(Ramsey)定理的更多相关文章

  1. HDU-6125-Friend-Graph-2017CCPC网络赛(图论,拉姆齐定理-组合数学)

    Friend-Graph Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  2. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

  3. 鸽巢原理及其扩展——Ramsey定理

    第一部分:鸽巢原理 咕咕咕!!! 然鹅大家还是最熟悉我→ a数组:but 我也很重要 $:我好像也出现不少次 以上纯属灌水 文章简叙:鸽巢原理对初赛时的问题求解以及复赛的数论题目都有启发意义.直接的初 ...

  4. 2017CCPC 网络选拔赛1003 Ramsey定理

    Ramsey定理 任意6个人中,一定有三个人互为朋友,或者互相不是朋友. 证明 这里我就不证明了.下面链接有证明 鸽巢原理 Ramsey定理 AC代码 #include <stdio.h> ...

  5. 数学:拓展Lucas定理

    拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的 ...

  6. 图论:Prufer编码-Cayley定理

    BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点 ...

  7. codeforces 1260C. Infinite Fence (数学or裴蜀定理)

    只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...

  8. 模板 - 数学 - 数论 - 扩展Euler定理

    费马(Fermat)小定理 当 \(p\) 为质数,则 \(a^{p-1}\equiv 1 \mod p\) 反之,费马小定理的逆定理不成立,这样的数叫做伪质数,最小的伪质数是341. 欧拉(Eule ...

  9. [数学][欧拉降幂定理]Exponial

    Exponial 题目 http://exam.upc.edu.cn/problem.php?cid=1512&pid=4 欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b ...

随机推荐

  1. 评价Win8自带输入法

    对于人机交互设计,有以下四个基本原则:从用户角度考虑.从头到尾记住用户选择.短期刺激和长期使用的好处坏处.不让用户犯简单错误.我用的最多的是我的系统自带的输入法,评价的也只能是它了. 1.从用户角度: ...

  2. 扩展欧几里德 SGU 106

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...

  3. HDU 5200 Trees 二分

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5200 bc(中文):http://bestcoder.hdu.edu.cn/contests ...

  4. Hibernate:工作原理

    Hibernate的工作原理图如下所示:

  5. 2nd 阅读构建之法有感

    阅读构建之法有感 利用这一周的时间,我大致了解构建之法一书,这本书带我走进了一个全新的领域.它让我以一种新的视角去了解软件产业的发展和工作,领略软件工程的独特魅力,更给出了简单易懂的方式去理解何为软件 ...

  6. rxjs5.X系列 —— ErrorHandling/Condition/Mathematical系列 api 笔记

    欢迎指导与讨论 : ) 前言 本文是笔者翻译 RxJS 5.X 官网各类operation操作系列的的第四篇 —— ErrorHanding异常处理.Condition Operator情况操作.Ma ...

  7. 第97天:CSS3渐变和过渡详解

    一.渐变 渐变是CSS3当中比较丰富多彩的一个特性,通过渐变我们可以实现许多炫丽的效果,有效的减少图片的使用数量,并且具有很强的适应性和可扩展性. 可分为线性渐变.径向渐变 1. 线性渐变 (grad ...

  8. 第92天:CSS3中颜色和文本属性

    一.颜色的表示方式 1. rgba(255,0,0,0.1)  rgba是代表Red(红色) Green(绿色) Blue(蓝色)和 Alpha透明度.虽然它有的时候被描述为一个颜色空间 新增了RGB ...

  9. HDU4258_Covered Walkway

    题目是一个很典型的斜率优化的题目.题意就不说了. 是这样的,对于双端优先队列,我们共有队首和队尾两个删除操作,来保证对于任意一个i,第一个元素都是最优的. 我们把dp的转移方程列出来就直达其状态为f[ ...

  10. luogu 1344 追查坏牛奶(最小割)

    第一问求最小割. 第二问求割边最小的最小割. 我们直接求出第二问就可以求出第一问了. 对于求割边最小,如果我们可以把每条边都附加一个1的权值,那么求最小割是不是会优先选择1最少的边呢. 但是如果直接把 ...