LINK

题意:给出$(n <= 30000)$个数,$q <= 2e5$个查询,每个查询要求给出$[l,r]$内不同元素的个数

思路:这题可用主席树查询历史版本的方法做,感觉这个比较容易想到...但是主席树不太会用 其次可以用莫队分块的方法暴力过,再来就是使用树状数组维护不同数量的前缀和了,如果不使用离散化直接用map的话还会TLE... 通过维护当前位置上的数所记录的下标最靠右(即最近一次出现的位置),一边维护数量的前缀和,一边检查是否到达某个查询的右边界,再通过前缀性质减一下就得出了。

/** @Date    : 2017-05-08 22:59:06
* @FileName: SPOJ DQUERY BIT or 主席树 or 莫队.cpp
* @Platform: Windows
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; vector v;
int a[30100];
int C[30100];
int pos[30100];
struct yuu
{
int l, r, m;
bool operator <(const yuu &a) const
{
return this->r < a.r;
}
}b[2*N];
int ans[2*N];
int n, q;
int cmp(yuu a, yuu b)
{
return a.r < b.r;
} void add(int x, int v)
{
while(x <= n)
{
C[x] += v;
x += (-x) & x;
}
return ;
} int getsum(int x)
{
int res = 0;
while(x)
{
res += C[x];
x -= (-x) & x;
}
return res;
} int main()
{
while(~scanf("%d", &n))
{
for(int i = 1; i <= n; i++)
{
scanf("%d", a + i);
v.PB(a[i]);
}
scanf("%d", &q);
for(int i = 0; i < q; i++)
{
scanf("%d%d", &b[i].l, &b[i].r);
b[i].m = i;
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(),v.end()), v.end());
for(int i = 1; i <= n; i++)
{
a[i] = lower_bound(v.begin(),v.end(), a[i]) - v.begin();
}
sort(b, b + q);
MMF(C);
MMF(pos);
int cnt = 0;
for(int i = 1; i <= n; i++)
{
if(!pos[a[i]])
{
add(i, 1);
pos[a[i]] = i;
}
else
{
add(i, 1);
add(pos[a[i]], -1);
pos[a[i]] = i;
}
while(cnt < q && i == b[cnt].r)
{
ans[b[cnt].m] = getsum(b[cnt].r) - getsum(b[cnt].l - 1);
cnt++;
}
}
for(int i = 0; i < q; i++)
printf("%d\n", ans[i]);
}
return 0;
}

SPOJ DQUERY 离线树状数组+离散化的更多相关文章

  1. Educational Codeforces Round 10 D. Nested Segments 离线树状数组 离散化

    D. Nested Segments 题目连接: http://www.codeforces.com/contest/652/problem/D Description You are given n ...

  2. SPOJ DQUERY D-query 离线+树状数组

    本来是想找个主席树的题目来练一下的,这个题目虽说可以用主席树做,但是用这个方法感觉更加叼炸天 第一次做这种离线方法,所谓离线,就在把所有询问先存贮起来,预处理之后再一个一个操作 像这个题目,每个操作要 ...

  3. SPOJ3267 D-query 离线+树状数组 在线主席树

    分析:这个题,离线的话就是水题,如果强制在线,其实和离线一个思路,然后硬上主席树就行了 离线的代码 #include <iostream> #include <stdio.h> ...

  4. SPOJ 3267 D-query(离散化+在线主席树 | 离线树状数组)

    DQUERY - D-query #sorting #tree English Vietnamese Given a sequence of n numbers a1, a2, ..., an and ...

  5. SPOJ DQUERY D-query (在线主席树/ 离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. SPOJ DQUERY 题意: 给出一串数,询问[L,R]区间中有多少个不同的数 . 解法: 关键是查询到某个右端点时,使其左边出现过的数都记录在 ...

  6. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

  7. CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)

    题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...

  8. POJ 3416 Crossing --离线+树状数组

    题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少 ...

  9. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. mysql 对表格加索引但原表格有重复数据

    1.把表中唯一数据搜索创建临时表,最后代替原先表. create table mmmmmm as SELECT * FROM meriadianannotation GROUP BY SeriesID ...

  2. 超级迷宫需求分析与建议-NABCD模型

    超级迷宫需求分析与建议-NABCD模型 制作者-姜中希 1N-Need 需求  首先这是一个手机游戏风靡的时代,随着智能手机不断的更新问世,4G网络的不断扩大普及,越来越多的手机游戏受到广大玩家的追捧 ...

  3. OpenNF tutorial复现

    这篇博客记录了自己实现OpenNF官网上tutorial的过程和遇见的问题,如果有不对的地方还请批评指正! tutorial链接 实验内容 这个实验展示了如何迅速且安全地把一个TCP流从一个NF实例迁 ...

  4. 2014-2015 ACM-ICPC, NEERC, Eastern Subregional Contest Problem H. Pair: normal and paranormal

    题目链接:http://codeforces.com/group/aUVPeyEnI2/contest/229669 时间限制:1s 空间限制:64MB 题目大意:给定一个长度为2n,由n个大写字母和 ...

  5. 第四次c++作业

    一,GitHub地址 https://github.com/ronghuijun/3Elevators-scheduling 二,命令行和文件读写 百度有时候有点蒙,命令行用的是D:>Eleva ...

  6. Rsyslog的三种传输协议简要介绍

    rsyslog的三种传输协议 rsyslog 可以理解为多线程增强版的syslog. rsyslog提供了三种远程传输协议,分别是: 1. UDP 传输协议 基于传统UDP协议进行远程日志传输,也是传 ...

  7. mac python install zlib not available

    用brew install 3.4.4(python)时报 zipimport.ZipImportError: can't decompress data; zlib not available 的错 ...

  8. 给新建的kvm虚拟机创建网络接口

    (一)首先必须创建网卡连接桥接口的启动脚本和停止脚本,其中脚本中的 $1:表示为虚拟机的网卡的右边接口,这两个脚本就是讲虚拟机的网卡的右边接口接在网桥上,实现桥接模型     # 1:/etc/qem ...

  9. utuntu下安装eclipse+jdk

    安装jdk: 1.下载一个可以用的jdk压缩包.下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads- ...

  10. 【Python】内置函数

    一.内置函数表格 详细信息 二.内置函数详情 2.1 abs(x) 返回绝对值 1 2 >>> abs(-5) 5 2.2 all(iterable) 如果这个可迭代的元素都为真,就 ...