【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)
4403: 序列统计
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 653 Solved: 320Description
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。
Input
输入第一行包含一个整数T,表示数据组数。第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
Output
输出包含T行,每行有一个数字,表示你所求出的答案对106+3取模的结果。
Sample Input
21 4 52 4 5Sample Output
25HINT
提示
【样例说明】满足条件的2个序列为[4]和[5]。
【数据规模和约定】对于100%的数据,1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。
Source
【分析】
跟上一题差不多。
答案为$C_{n+r-l+1}{r-l+1}-1$
用卢卡斯定理即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000003
#define Maxn 1000010
#define LL long long int pw[Maxn],inv[Maxn]; void init()
{
pw[]=;for(int i=;i<=Mod;i++) pw[i]=1LL*pw[i-]*i%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
inv[]=;for(int i=;i<=Mod;i++) inv[i]=1LL*inv[i]*inv[i-]%Mod;
} int get_c(int n,int m)
{
if(n<m) return ;
return 1LL*pw[n]*inv[m]%Mod*inv[n-m]%Mod;
} int lucas(int n,int m)
{
if(n<m) return ;
int ans=;
while(n&&m)
{
ans=1LL*ans*get_c(n%Mod,m%Mod)%Mod;
n/=Mod;m/=Mod;
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
init();
while(T--)
{
int n,l,r;
scanf("%d%d%d",&n,&l,&r);
int m=r-l+;
int ans=lucas(n+m,m)-;
ans=(ans%Mod+Mod)%Mod;
printf("%d\n",ans);
// printf("%d\n",lucas(n+m,m)-1);
}
return ;
}
2017-04-16 14:23:06
【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)的更多相关文章
- bzoj 4403 序列统计 卢卡斯定理
4403:序列统计 Time Limit: 3 Sec Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...
- Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] ...
- [BZOJ 3992][SDOI2015]序列统计
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 2275 Solved: 1090[Submit][Stat ...
- 【BZOJ4403】序列统计 Lucas定理
[BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...
- BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1155 Solved: 532[Submit][Statu ...
- BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1017 Solved: 466[Submit][Statu ...
- BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)
3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...
- BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)
题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...
- bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...
- bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...
随机推荐
- ④ 设计模式的艺术-10.装饰(Decorator)模式
职责 装饰模式是在不必改变原类文件和使用继承的情况下,动态的扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 装饰模式是一种用于代替继承的技术,无需通过继承增加子类就能扩展对 ...
- 关于Java泛型深入理解小总结
1.何为泛型 首先泛型的本质便是类型参数化,通俗的说就是用一个变量来表示类型,这个类型可以是String,Integer等等不确定,表明可接受的类型,原理类似如下代码 int pattern; //声 ...
- 【BZOJ4237】稻草人 [分治][单调栈]
稻草人 Time Limit: 40 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description JOI村有一片荒地,上面竖着N个稻草 ...
- 【BZOJ】4764: 弹飞大爷 LCT
[题意]给定n个数字ai,表示大爷落到i处会被弹飞到i+ai处,弹飞到>n或<1处则落地.m次操作,修改一个ai,或询问大爷落到x处经过几次落地(或-1).n,m<=10^5,|ai ...
- 基本控件文档-UITextField属性---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...
- 【洛谷 P4219】 [BJOI2014]大融合(LCT)
题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define ...
- 【leetcode 简单】第五十题 位1的个数
编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000000000 ...
- python模块之imghdr检测图片类型
1. imghdr是什么 imghdr是一个用来检测图片类型的模块,传递给它的可以是一个文件对象,也可以是一个字节流. 能够支持的图片格式: 2. 如何使用 提供了一个api叫做imghdr.what ...
- 选择问题(选择数组中第K小的数)
由排序问题可以引申出选择问题,选择问题就是选择并返回数组中第k小的数,如果把数组全部排好序,在返回第k小的数,也能正确返回,但是这无疑做了很多无用功,由上篇博客中提到的快速排序,稍稍修改下就可以以较小 ...
- Linux下如何打开img镜像文件
有些镜像文件为IMG格式,在Linux如何打开呢?例如从微软dreampark下载的Windows Server 2008 R2镜像文件,使用file命令查看: $ file chs_windows_ ...