1、下载Hive需要的版本

我们选用的是hive-3.1.0

将下载下来的hive压缩文件放到/opt/workspace/下

2、解压hive-3.1.0.tar.gz文件

[root@master1 workspace]# tar -zxvf apache-hive-3.1.-bin.tar.gz

3、重命名

[root@master1 workspace]# mv apache-hive-3.1.-bin hive-3.1.

4、因为我们的hive运行在hive on spark 所以需要在lib文件下加入jar包

Since Hive 2.2., Hive on Spark runs with Spark 2.0. and above, which doesn’t have an assembly jar. 
To run with YARN mode (either yarn-client or yarn-cluster), link the following jars to HIVE_HOME/lib. scala-library
spark-core
spark-network-common
mysql-connector-java-8.0.12.jar

5、修改配置文件 hive-site.xml   hive-env.sh  /etc/profile

hive-env.sh配置文件

# Hive Client memory usage can be an issue if a large number of clients
# are running at the same time. The flags below have been useful in
# reducing memory usage:
#
# if [ "$SERVICE" = "cli" ]; then
# if [ -z "$DEBUG" ]; then
# export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:+UseParNewGC -XX:-UseGCOverheadLimit"
# else
# export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:-UseGCOverheadLimit"
# fi
# fi # The heap size of the jvm stared by hive shell script can be controlled via:
#
# export HADOOP_HEAPSIZE=
export HADOOP_HEAPSIZE=
#
# Larger heap size may be required when running queries over large number of files or partitions.
# By default hive shell scripts use a heap size of (MB). Larger heap size would also be
# appropriate for hive server. # Set HADOOP_HOME to point to a specific hadoop install directory
# HADOOP_HOME=${bin}/../../hadoop
export HADOOP_HOME=/opt/workspace/hadoop-2.9. # Hive Configuration Directory can be controlled by:
# export HIVE_CONF_DIR=
export HIVE_CONF_DIR=/opt/workspace/hive-3.1./conf # Folder containing extra libraries required for hive compilation/execution can be controlled by:
# export HIVE_AUX_JARS_PATH=
export HIVE_AUX_JARS_PATH=/opt/workspace/hive-3.1./lib

hive-site.xml配置文件如下

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--><configuration>
<!-- WARNING!!! This file is auto generated for documentation purposes ONLY! -->
<!-- WARNING!!! Any changes you make to this file will be ignored by Hive. -->
<!-- WARNING!!! You must make your changes in hive-site.xml instead. -->
<!-- Hive Execution Parameters -->
<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://159.226.48.202:3306/hivedata?createDatabaseIfNotExist=true&amp;useUnicode=true&amp;characterEncoding=UTF-8&amp;u  seSSL=false</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.cj.jdbc.Driver</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionUserName</name>(用户名)
  <value>root</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionPassword</name>(密码)
  <value>MyPass@123</value>
</property>

<property>
  <name>hive.metastore.schema.verification</name>
  <value>false</value>
</property>
<property>
  <name>hive.metastore.local</name>
  <value>true</value>
</property>
<property>
  <name>hive.metastore.local</name>
  <value>true</value>
</property>
<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/hive/warehouse</value>
</property>
<!--
<property>
  <name>hive.execution.engine</name>
  <value>spark</value>
</property>
<property>
  <name>spark.home</name>
  <value>/opt/workspace/spark-2.3.0-bin-hadoop2-without-hive</value>
</property>
<property>
  <name>spark.master</name>
  <value>spark://master1:7077,spark://master2:7077</value> // 或者yarn-cluster/yarn-client
</property>
<property>
  <name>spark.submit.deployMode</name>
  <value>client</value>
</property>
<property>
  <name>spark.eventLog.enabled</name>
  <value>true</value>
</property>
<property>
  <name>spark.eventLog.dir</name>
  <value>hdfs://user/spark/spark-log</value>
</property>
<property>
  <name>spark.serializer</name>
  <value>org.apache.spark.serializer.KryoSerializer</value>
</property>
<property>
  <name>spark.executor.memeory</name>
  <value>512m</value>
</property>
<property>
  <name>spark.driver.memeory</name>
  <value>512m</value>
</property>
<property>
  <name>spark.executor.extraJavaOptions</name>
  <value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value>
</property>-->
<!--spark engine -->
<property>
  <name>hive.execution.engine</name>
  <value>spark</value>
</property>
<property>
  <name>hive.enable.spark.execution.engine</name>
  <value>true</value>
</property>
<!--sparkcontext -->
<property>
  <name>spark.master</name>
  <value>yarn-cluster</value>
</property>
<property>
  <name>spark.serializer</name>
  <value>org.apache.spark.serializer.KryoSerializer</value>
</property>
<!--下面的根据实际情况配置 -->
<property>
  <name>spark.executor.instances</name>
  <value>3</value>
</property>
<property>
  <name>spark.executor.cores</name>
  <value>4</value>
</property>
<property>
  <name>spark.executor.memeory</name>
  <value>1024m</value>
</property>
<property>
  <name>spark.driver.cores</name>
  <value>2</value>
</property>
<property>
  <name>spark.driver.memory</name>
  <value>1024m</value>
</property>
<property>
  <name>spark.yarn.queue</name>
  <value>default</value>
</property>
<property>
  <name>spark.app.name</name>
  <value>myInceptor</value>
</property>

<!--事务相关 -->
<property>
  <name>hive.support.concurrency</name>
  <value>true</value>
</property>
<property>
  <name>hive.enforce.bucketing</name>
  <value>true</value>
</property>
<property>
  <name>hive.exec.dynamic.partition.mode</name>
  <value>nonstrict</value>
</property>
<property>
  <name>hive.txn.manager</name>
  <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
</property>
<property>
  <name>hive.compactor.initiator.on</name>
  <value>true</value>
</property>
<property>
  <name>hive.compactor.worker.threads</name>
  <value>1</value>
</property>
<property>
  <name>spark.executor.extraJavaOptions</name>
  <value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
  </value>
</property>
<!--其它 -->
<property>
  <name>hive.server2.enable.doAs</name>
  <value>false</value>
</property>

<property>
  <name>hive.server2.thrift.max.worker.threads</name>
  <value>1000</value>
</property>
<property>
  <name>hive.spark.job.monitor.timeout</name>
  <value>3m</value>
  <description>
    Expects a time value with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is sec if not specified.
    Timeout for job monitor to get Spark job state.
  </description>
</property>

</configuration>

注意事项:在不同的服务器上进行配置时,注意标红部分,需要按照不同的服务器进行更改,改为对应的ip及元数据库。

/etc/profile

# Hive Config
export HIVE_HOME=/opt/workspace/hive-3.1.
export HIVE_CONF_DIR=${HIVE_HOME}/conf
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*

export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${MAVEN_HOME}/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:${HIVE_HOME}/bin:${SPARK_HOME}/bin:${HBASE_HOME}/bin:$SQOOP_HOME/bin:${ZK_HOME}/bin:$PATH

 
source /etc/profile

6、hive初始化

[root@master1 hive-3.1.0]# cd bin
[root@master1 bin]# schematool -initSchema -dbType mysql

问题:mysql需要授权

说明:在进行grant mysql添加时候,注意:之前设置的是本地登录mysql 密码是123456

而在hive-site.xml中配置的远程访问元数据库hivedata是使用密码MyPass@123,所以设置密码时需要注意,之后进行刷新操作。

登录数据库密码变为MyPass@123

[root@slave1 bin]# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is
Server version: 5.6. MySQL Community Server (GPL) Copyright (c) , , Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> grant all privileges on *.* to root@"%" identified by 'MyPass@123';
Query OK, rows affected (0.00 sec) mysql> grant all privileges on *.* to root@"localhost" identified by 'MyPass@123';
Query OK, rows affected (0.01 sec)

  mysql> grant all privileges on *.* to root@"slave1" identified by 'MyPass@123';
  Query OK, 0 rows affected (0.00 sec)


mysql>
flush privileges;
Query OK, rows affected (0.00 sec)
重新初始化成功。状态如下:
[root@master1 hive-3.1.]# cd bin
[root@master1 bin]# schematool -initSchema -dbType mysql

参考:https://blog.csdn.net/sinat_25943197/article/details/81906060

大数据-hive安装的更多相关文章

  1. 大数据软件安装之Hadoop(Apache)(数据存储及计算)

    大数据软件安装之Hadoop(Apache)(数据存储及计算) 一.生产环境准备 1.修改主机名 vim /etc/sysconfig/network 2.修改静态ip vim /etc/udev/r ...

  2. 大数据软件安装之HBase(NoSQL数据库)

    一.安装部署 1.Zookeeper正常部署 (见前篇博文大数据软件安装之ZooKeeper监控 ) [test@hadoop102 zookeeper-3.4.10]$ bin/zkServer.s ...

  3. 大数据软件安装之Hive(查询)

    一.安装及配置 官方文档: https://cwiki.apache.org/confluence/display/Hive/GettingStarted 安装Hive2.3 1)上传apache-h ...

  4. 大数据--Hive的安装以及三种交互方式

    1.3 Hive的安装(前提是:mysql和hadoop必须已经成功启动了) 在之前博客中我有记录安装JDK和Hadoop和Mysql的过程,如果还没有安装,请先进行安装配置好,对应的随笔我也提供了百 ...

  5. 【大数据】安装关系型数据库MySQL安装大数据处理框架Hadoop

    作业来源于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 1. 简述Hadoop平台的起源.发展历史与应用现状. 列举发展过 ...

  6. 【大数据】安装关系型数据库MySQL 安装大数据处理框架Hadoop

    作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 1.安装Mysql 使用命令  sudo apt-get ins ...

  7. [Hadoop大数据]——Hive初识

    Hive出现的背景 Hadoop提供了大数据的通用解决方案,比如存储提供了Hdfs,计算提供了MapReduce思想.但是想要写出MapReduce算法还是比较繁琐的,对于开发者来说,需要了解底层的h ...

  8. [Hadoop大数据]——Hive连接JOIN用例详解

    SQL里面通常都会用Join来连接两个表,做复杂的关联查询.比如用户表和订单表,能通过join得到某个用户购买的产品:或者某个产品被购买的人群.... Hive也支持这样的操作,而且由于Hive底层运 ...

  9. 大数据hadoop安装

    hadoop集群搭建--CentOS部署Hadoop服务 在了解了Hadoop的相关知识后,接下来就是Hadoop环境的搭建,搭建Hadoop环境是正式学习大数据的开始,接下来就开始搭建环境!我们用到 ...

随机推荐

  1. ubuntu如何安装samba

    1.samba安装sudo apt-get install samba2.修改smb.confsudo gedit /etc/samba/smb.conf 文件最后增加如下代码:[share] pat ...

  2. [SoapUI] 怎样确定一个应答报文的格式是不是标准的JSON

    有一个网站 : http://jsonviewer.stack.hu/ 将Response的文本贴进去,如果是标准的JSON格式,就可以以JSON的view显示出来

  3. 一个新手后端需要了解的前端核心知识点之margin(二)

    最近以开发自己博客网站为出发点开始决心打牢几个非常重要的前端知识点: margin,这个在我刚刚接触编程的时候留下的困扰的东西,一开始只想着怎么快速开发自己的网站,别人的终归是别人的,想要挖墙脚,必须 ...

  4. 安装CentOS 6.4 64 位操作系统

    1.安装 CentOS 6.4 64位操作系统的一些困境: 1.1 CentOS 6.4 64位操作系统的ISO文件有4G多,通过U盘安装的方式已经不可取(FAT32 只支持最大4G文件); 1.2 ...

  5. 删除右键菜单中的Git Gui Here、Git Bash Here的方法

    修改注册表的方法: 1.点击左下角开始菜单 - 运行(输入regedit)- 确定或者回车: 2.在打开的注册表中找到:HKEY_CLASSES_ROOT,并点HKEY_CLASSES_ROOT前面的 ...

  6. 【Windows】ASP.NET Core 部署到 IIS

    如果你的系统环境没有 .NET CORE SDK,请到官网进行下载: https://www.microsoft.com/net/download/windows 接下来我们开始进行环境的部署,首先在 ...

  7. Head First Python之3文件与异常

    文件基本操作 Python从文本读取数据时,一次会到达一个数据行. sketch.txt文件 Man: Is this the right room for an argument? Other Ma ...

  8. winsock的io模型(终极篇)

    最近在看服务器框架的搭建,看了不少,都是零零碎碎的,觉得看的差不多了,可以写点最后的总结了,然后,竟然发现了这篇文章,总结做的特别好,肯定比我总结写要好多了,所以我也就不写了,直接转吧...... 套 ...

  9. 第一课 了解SQL

    1.1数据库基础 数据库:数据库是一个以某种有组织的方式存储的数据集合,可以想象是一个文件柜 数据库管理软件:DBMS用来操做创建数据库的软件 表:某种特定类型数据的结构化清单,数据库的下一层就是表 ...

  10. Maven整理笔记の生命周期和插件

    项目构建的生命周期,其实软件开发人员每天都在干这个事,即项目清理.初始化.编译.测试.打包.集成测试.验证.部署和站点生成等,可以说几乎所有项目的构建都可以映射到这样一个生命周期上. Maven的插件 ...