[NOIP2003]栈 题解(卡特兰数)
[NOIP2003]栈
Description
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作:
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
2.将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列;
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
Solution
1.题目可将进栈记为0,出栈记为1,那么问题即为求由n个0和n个1组成的字符串数,条件是每个1出现前必须有一个对应的0出现;
2.那么可以推得方案数为总方案数减半,解与求01串的个数相同:n个0与n个1构成的序列方案数,使得任何一个前缀0的个数不少于1的个数;
做法是将0看做在坐标系中向右走一步,1看做向上走一步,则问题可化简为从原点到(n,n)所有路线中一直处于y=x之下(不越过直线y=x)的不同路径方案数,方案数即为对应n的卡特兰数;
3.因为没有要求取模,可以考虑使用高精度运算,输出n对应的卡特兰数即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int ans[100001]={},x=0;
void mul(int n){
for(int i=1;i<=ans[0];++i){
ans[i]=ans[i]*n+x;
x=ans[i]/10;
ans[i]%=10;
}
while(x>0){
ans[0]++;
ans[ans[0]]=x%10;
x/=10;
}
}
void div(int n){
int q=0;
for(int i=ans[0];i>=1;--i)
{
x=(ans[i]+q*10)%n;
ans[i]=(ans[i]+q*10)/n;
q=x;
}
while(ans[ans[0]]==0)ans[0]--;
}
int main(){
ans[0]=ans[1]=1;
int n;
scanf("%d",&n);
for(int i=n+2;i<=(n<<1);++i)mul(i);
for(int i=2;i<=n;++i) div(i);
for(int i=ans[0];i>0;--i)printf("%d",ans[i]);
printf("\n");
return 0;
}
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html
[NOIP2003]栈 题解(卡特兰数)的更多相关文章
- AC日记——codevs 1086 栈 (卡特兰数)
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- 卡特兰数 BZOJ3907 网格 NOIP2003 栈
卡特兰数 卡特兰数2 卡特兰数:主要是求排列组合问题 1:括号化矩阵连乘,问多少种方案 2:走方格,不能过对角线,问多少种方案 3:凸边型,划分成三角形 4:1到n的序列进栈,有多少种出栈方案 NOI ...
- CH1102 火车进出栈问题(高精/卡特兰数)
描述 一列火车n节车厢,依次编号为1,2,3,-,n.每节车厢有两种运动方式,进栈与出栈,问n节车厢出栈的可能排列方式有多少种. 输入格式 一个数,n(n<=60000) 输出格式 一个数s表示 ...
- 【讲●解】火车进出栈类问题 & 卡特兰数应用
火车进出栈类问题详讲 & 卡特兰数应用 引题:火车进出栈问题 [题目大意] 给定 \(1\)~\(N\) 这\(N\)个整数和一个大小无限的栈,每个数都要进栈并出栈一次.如果进栈的顺序为 \( ...
- NOIP2003pj栈[卡特兰数]
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- 出栈顺序 与 卡特兰数(Catalan)的关系
一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3 ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2 ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
随机推荐
- shader language学习(1)——shader language简介背景
shader language,称为着色语言,shade在英语是阴影.颜色深浅的意思.shader language基于物体本身属性和光照条件,计算美格橡塑的颜色值. 实际上这种解释具有明显的时代局限 ...
- (十二)Jmeter之Bean Shell的使用(一)
一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...
- i18n实现前端国际化(实例)
在今日的需求中需要利用 i18n 这个框架来实现前端的国家化操作,下图是实现效果: 点击选择框实现网页上语言的切换: 下面开始实现过程: 所需工具: - jquery-3.3.1.js 下载地址 ...
- Java Map 在put值时value值不被覆盖
一.问题描述 最近在代码开发中遇到一个问题,在往Map中put文件路径值然后把Map放到List中去时,遇到问题是Map的后一个值总是把前一个值覆盖,导致最后Map中只有一个值. 二.解决办法(有如下 ...
- Linux 常用指令【持续更新】
在学校的时候学过一些简单的 Linux 命令,主要是文件的创建拷贝解压等操作,最近在电脑上安装了一个CentOS6.8版本的基本版,纯命令行操作. ../ 代表上一级目录 ./ 代表本级目录 / 代表 ...
- MySQL join 使用方法
JOIN 按照功能大致分为如下三类: INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录. LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(tab ...
- Educational Codeforces Round 55 Div. 2 翻车记
A:签到. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> ...
- 洛谷 P2574 XOR的艺术
刚刚学了,线段树,一道线段树入门题试试水 下面是题面 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个 ...
- Spring Boot系列教程五:使用properties配置文件实现多环境配置
一.前言 实际项目开发过程中会用到多个环境,比如dev,test,product环境,不同的环境可能使用不同参数,为便于部署提高效率,本篇主要通过properties配置文件来实现多环境的配置. 二. ...
- 洛谷八连测R5题解
woc居然忘了早上有八连测T T 还好明早还有一场...今天的题除了T3都挺NOIP的... T1只需要按横坐标第一关键字,纵坐标第二关键字排序一个一个取就好了... #include<iost ...