一、P-R曲线

P-R曲线刻画查准率和查全率之间的关系,查准率指的是在所有预测为正例的数据中,真正例所占的比例,查全率是指预测为真正例的数据占所有正例数据的比例。
即:查准率P=TP/(TP + FP) 查全率=TP/(TP+FN)
查准率和查全率是一对矛盾的度量,一般来说,查准率高时,查全率往往偏低,查全率高时,查准率往往偏低,例如,若希望将好瓜尽可能多选出来,则可通过增加选瓜的数量来实现,如果希望将所有的西瓜都选上,那么所有的好瓜必然都被选上了,但这样查准率就会较低;若希望选出的瓜中好瓜比例尽可能高,则可只挑选最有把握的瓜,但这样就难免会漏掉不少好瓜,使得查全率较低。

在很多情况下,我们可以根据学习器的预测结果对样例进行排序,排在前面的是学习器认为最可能是正例的样本,排在后面的是学习器认为最不可能是正例的样本,按此顺序逐个把样本作为正例进行预测,则每次可计算当前的查全率和查准率,以查准率为y轴,以查全率为x轴,可以画出下面的P-R曲线。

如果一个学习器的P-R曲线被另一个学习器的P-R曲线完全包住,则可断言后者的性能优于前者,例如上面的A和B优于学习器C,但是A和B的性能无法直接判断,但我们往往仍希望把学习器A和学习器B进行一个比较,我们可以根据曲线下方的面积大小来进行比较,但更常用的是平衡点或者是F1值。平衡点(BEP)是查准率=查全率时的取值,如果这个值较大,则说明学习器的性能较好。而F1 = 2 * P * R /( P + R ),同样,F1值越大,我们可以认为该学习器的性能较好。

联合建模(BJ)P-R曲线

 
二、P-R曲线和ROC曲线有什么区别,如何选择呢?
说明:图a和b是原始样本的ROC曲线和PR曲线,图c和d是将负样本增加10倍后的ROC曲线和PR曲线。
1)从a和c可以看出,负样本增加10倍后,ROC曲线变化不大。分析一下为什么变化不大,其Y轴是TPR,x轴是FPR,当固定一个threshold来计算TPR和FPR的时候,虽然负样本增加了10倍,也就是FPR的分母虽然变大了,但是正常概率来讲,这个时候超过threshold的负样本量也会随之增加,也就是分子也会随之增加,所以总体FPR变化不大,从这个角度来看的话正负样本稍微不均衡的话,对KS影响也不大,因为KS=max(TPR-FPR),这个前提是正负样本的量都比较大的情况下,因为只有样本量比较大的情况下,根据大数定律,计算出来的频率才非常接近于真实的概率值,有资料显示正负样本都超过6000的量,计算的频率就比较接近概率。所以在样本量都不是很大的情况下,如果样本还极端不均衡的话,就会有一些影响。由此可见,ROC曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能。
 
2)从b和d图可以看出,负样本增加10倍后,PR曲线变化比较大。也分析一下为什们变化大,其Y轴是precision,x轴是recall,当负样本增加10倍后,在racall不变的情况下,必然召回了更多的负样本,所以精确度会大幅下降,b和d图示也非常明显的反映了这一状况,所以PR曲线变化很大,所以PR曲线对正负样本分布比较敏感。
 
如何选择呢?
  • 在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000,甚至1/10000。若选择不同的测试集,P-R曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。
  • 但需要注意的是,选择P-R曲线还是ROC曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R曲线则能够更直观地反映其性能。
  • PR曲线比ROC曲线更加关注正样本,而ROC则兼顾了两者。
  • AUC越大,反映出正样本的预测结果更加靠前。(推荐的样本更能符合用户的喜好)
  • 当正负样本比例失调时,比如正样本1个,负样本100个,则ROC曲线变化不大,此时用PR曲线更加能反映出分类器性能的好坏。这个时候指的是两个分类器,因为只有一个正样本,所以在画auc的时候变化可能不太大;但是在画PR曲线的时候,因为要召回这一个正样本,看哪个分类器同时召回了更少的负样本,差的分类器就会召回更多的负样本,这样precision必然大幅下降,这样分类器性能对比就出来了。

P-R曲线及与ROC曲线区别的更多相关文章

  1. 【ROC曲线】关于ROC曲线、PR曲线对于不平衡样本的不敏感性分析说引发的思考

    ROC曲线 在网上有很多地方都有说ROC曲线对于正负样本比例不敏感,即正负样本比例的变化不会改变ROC曲线.但是对于PR曲线就不一样了.PR曲线会随着正负样本比例的变化而变化.但是没有一个有十分具体和 ...

  2. R语言︱ROC曲线——分类器的性能表现评价

    笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...

  3. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  4. 机器学习之分类器性能指标之ROC曲线、AUC值

    分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...

  5. ROC曲线和AUC值(转)

    http://www.cnblogs.com/dlml/p/4403482.html 分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperat ...

  6. ROC曲线 VS PR曲线

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  7. 【分类模型评判指标 二】ROC曲线与AUC面积

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...

  8. 模型监控指标- 混淆矩阵、ROC曲线,AUC值,KS曲线以及KS值、PSI值,Lift图,Gain图,KT值,迁移矩阵

    1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正 ...

  9. 【笔记】ROC曲线

    ROC曲线 前文讲了PR曲线 这里说ROC曲线,其描述的是TPR和FPR之间的关系 TPR是什么呢,TPR就是召回率 FPR是什么呢,FPR就是和TPR对应的,即真实值为0的一行中的预测为1的部分比例 ...

随机推荐

  1. default.properties文件

    在地址栏访问某个 action 之所以能访问到,只因为在 default.properties 配置文件中有一个键值对,key 为struts.action.extension,值为 action,, ...

  2. Building simple plug-ins system for ASP.NET Core(转)

    Recently I built plug-ins support to my TemperatureStation IoT solution web site. The code for .NET ...

  3. 第145天:jQuery.touchSlider触屏满屏左右滚动幻灯片

    1.HTML <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...

  4. 【loj6342】跳一跳 期望dp

    题目描述 一个人从 $1$ 开始向 $n$ 跳,在 $i$ 时会等概率跳到 $i,i+1,...,n$ 之一.求从 $1$ 跳到 $n$ 的期望步数. $n\le 10^7$ . 题解 期望dp傻逼题 ...

  5. eclipse启动报错: No Java virtual machine

    在 scala-ide下载集成scala包的eclipse版本使用,启动时报错: A java runtime environment (JRE) or java development kit (J ...

  6. 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

    题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...

  7. byte数组转float实现与byte转换其它类型时进行&运算原理

    下面是将byte数组转换为float的实现 public static float getFloat(byte[] b) { int accum = 0; accum = accum|(b[0] &a ...

  8. CF954F Runner's Problem(动态规划,矩阵快速幂)

    CF954F Runner's Problem(动态规划,矩阵快速幂) 题面 CodeForces 翻译: 有一个\(3\times M\)的田野 一开始你在\((1,2)\)位置 如果你在\((i, ...

  9. NOIP计划与展望

        进入高中一个月了,NOIP这项尤为重要的赛事也即将到来.     这一个月来,烦恼多过一切,文化课的压力,作业的压力,老师的压力,需要自己一一去克服,前一个问题刚解决,后一个问题又出现,每天走 ...

  10. 【arc068E】Snuke Line

    Portal -->arc068E (温馨提示:那啥..因为各种奇怪的我也不知道的原因这题的题号在某度上面显示出来是agc007F...然而下面是arc068E的题解qwq给大家带来不便之处真是 ...