mahout学习
参考:http://www.360doc.com/content/14/0117/09/1200324_345883534.shtml
Precondition: 启动Hadoop集群
bin/hdfs namenode -format
sbin/start-dfs.sh(启动Namenode,nodenode相关节点)
sbin/start-yarn.sh(启动ResourceManager,nodeManager相关资源)
bin/hdfs dfsadmin -safemode leave(关闭安全模式)
Note:所有bin/mahout下对应的输入文件,输入文件夹均在HDFS文件目录下
In addition,Mahout下处理的文件必须是SequenceFile文件格式的,故需将txt格式文件转化为SequenceFile文件,如下:
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0$ bin/mahout seqdirectory -input(输入) /TagOutput/txtFile.txt -output(输出)/TagOutput/seqFile.txt --charset UTF-8
相关实践过程如下:
(将sequenceFile文件转化为可读的txt文件)
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0$ bin/mahout seqdumper -i(输入) /TagOutput/clusteredPoints/part-m-00000 -o(输出) ./TagOutput/clusterPoints.txt
Running on hadoop, using /home/kelvin/UntarFile/hadoop2CDH4//bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /home/kelvin/UntarFile/mahout-0.7-cdh4.5.0/mahout-examples-0.7-cdh4.5.0-job.jar
14/06/06 02:18:07 INFO common.AbstractJob: Command line arguments: {--endPhase=[2147483647], --input=[/TagOutput/clusteredPoints/part-m-00000], --output=[./TagOutput/clusterPoints.txt], --startPhase=[0], --tempDir=[temp]}
14/06/06 02:18:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/06/06 02:18:08 INFO driver.MahoutDriver: Program took 1162 ms (Minutes: 0.019366666666666667)
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0$ cd TagOutput/
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0/TagOutput$ ll
total 12
drwxrwxr-x 2 kelvin kelvin 4096 6? 6 02:12 ./
drwxr-xr-x 16 kelvin kelvin 4096 6? 6 02:15 ../
-rw-rw-r-- 1 kelvin kelvin 2767 6? 6 02:18 clusterPoints.txt
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0/TagOutput$ cat clusterPoints.txt
Input Path: /TagOutput/clusteredPoints/part-m-00000
Key class: class org.apache.hadoop.io.IntWritable Value Class: class org.apache.mahout.clustering.classify.WeightedPropertyVectorWritable
Key: 14: Value: wt: 1.0 distance: 13.357142857142858 vec: 2012000317 = [24.000]
Key: 14: Value: wt: 1.0 distance: 6.642857142857143 vec: 2012000318 = [4.000]
Key: 25: Value: wt: 1.0 distance: 11.615384615384592 vec: 2012000319 = [56.000]
Key: 14: Value: wt: 1.0 distance: 7.642857142857142 vec: 2012000320 = [3.000]
Key: 14: Value: wt: 1.0 distance: 11.357142857142858 vec: 2012000321 = [22.000]
Key: 25: Value: wt: 1.0 distance: 0.6153846153846132 vec: 2012000322 = [45.000]
Key: 14: Value: wt: 1.0 distance: 13.357142857142858 vec: 2012000323 = [24.000]
Key: 14: Value: wt: 1.0 distance: 6.642857142857143 vec: 2012000324 = [4.000]
Key: 25: Value: wt: 1.0 distance: 11.615384615384592 vec: 2012000325 = [56.000]
Key: 14: Value: wt: 1.0 distance: 7.642857142857142 vec: 2012000326 = [3.000]
Key: 14: Value: wt: 1.0 distance: 11.357142857142858 vec: 2012000327 = [22.000]
Key: 25: Value: wt: 1.0 distance: 2.384615384615403 vec: 2012000328 = [42.000]
Key: 25: Value: wt: 1.0 distance: 4.61538461538464 vec: 2012000329 = [49.000]
Key: 25: Value: wt: 1.0 distance: 3.384615384615356 vec: 2012000330 = [41.000]
Key: 14: Value: wt: 1.0 distance: 5.642857142857143 vec: 2012000331 = [5.000]
Key: 14: Value: wt: 1.0 distance: 7.642857142857142 vec: 2012000332 = [3.000]
Key: 14: Value: wt: 1.0 distance: 10.357142857142858 vec: 2012000333 = [21.000]
Key: 25: Value: wt: 1.0 distance: 10.38461538461539 vec: 2012000334 = [34.000]
Key: 25: Value: wt: 1.0 distance: 15.384615384615387 vec: 2012000335 = [29.000]
Key: 25: Value: wt: 1.0 distance: 1.3846153846153868 vec: 2012000336 = [43.000]
Key: 25: Value: wt: 1.0 distance: 9.615384615384606 vec: 2012000337 = [54.000]
Key: 25: Value: wt: 1.0 distance: 8.384615384615397 vec: 2012000338 = [36.000]
Key: 14: Value: wt: 1.0 distance: 8.642857142857142 vec: 2012000339 = [2.000]
Key: 14: Value: wt: 1.0 distance: 5.642857142857143 vec: 2012000340 = [5.000]
Key: 20: Value: wt: 1.0 distance: 1.7999999999999972 vec: 2012000341 = [78.000]
Key: 25: Value: wt: 1.0 distance: 9.615384615384606 vec: 2012000342 = [54.000]
Key: 20: Value: wt: 1.0 distance: 13.800000000000018 vec: 2012000343 = [66.000]
Key: 14: Value: wt: 1.0 distance: 3.6428571428571423 vec: 2012000344 = [7.000]
Key: 20: Value: wt: 1.0 distance: 29.200000000000053 vec: 2012000345 = [109.000]
Key: 20: Value: wt: 1.0 distance: 11.800000000000068 vec: 2012000346 = [68.000]
Key: 20: Value: wt: 1.0 distance: 1.7999999999999972 vec: 2012000347 = [78.000]
Key: 25: Value: wt: 1.0 distance: 6.384615384615375 vec: 2012000348 = [38.000]
Count: 32
(将相应的数据结点聚类后输出)
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0$ bin/mahout clusterdump --input /TagOutput/*final(:目录,非文件,最后一次迭代的clusters) --pointsDir /TagOutput/clusteredPoints(最后一次聚类后的点) --output ./TagOutput/clusterResult.txt
Running on hadoop, using /home/kelvin/UntarFile/hadoop2CDH4//bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /home/kelvin/UntarFile/mahout-0.7-cdh4.5.0/mahout-examples-0.7-cdh4.5.0-job.jar
14/06/06 02:50:11 INFO common.AbstractJob: Command line arguments: {--dictionaryType=[text], --distanceMeasure=[org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure], --endPhase=[2147483647], --input=[/TagOutput/*final], --output=[./TagOutput/clusterResult.txt], --outputFormat=[TEXT], --pointsDir=[/TagOutput/clusteredPoints], --startPhase=[0], --tempDir=[temp]}
14/06/06 02:50:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/06/06 02:50:14 INFO clustering.ClusterDumper: Wrote 3 clusters
14/06/06 02:50:14 INFO driver.MahoutDriver: Program took 2809 ms (Minutes: 0.046816666666666666)
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0$ cd TagOutput/
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0/TagOutput$ ls
clusterPoints.txt clusterResult.txt
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0/TagOutput$ ll
total 16
drwxrwxr-x 2 kelvin kelvin 4096 6? 6 02:30 ./
drwxr-xr-x 16 kelvin kelvin 4096 6? 6 02:15 ../
-rw-rw-r-- 1 kelvin kelvin 2767 6? 6 02:18 clusterPoints.txt
-rw-rw-r-- 1 kelvin kelvin 2108 6? 6 02:50 clusterResult.txt
kelvin@Master:~/UntarFile/mahout-0.7-cdh4.5.0/TagOutput$ cat clusterResult.txt
VL-14{n=14 c=[10.643] r=[9.013]}
Weight : [props - optional]: Point:
1.0 : [distance=13.357142857142858]: 2012000317 = [24.000]
1.0 : [distance=6.642857142857143]: 2012000318 = [4.000]
1.0 : [distance=7.642857142857142]: 2012000320 = [3.000]
1.0 : [distance=11.357142857142858]: 2012000321 = [22.000]
1.0 : [distance=13.357142857142858]: 2012000323 = [24.000]
1.0 : [distance=6.642857142857143]: 2012000324 = [4.000]
1.0 : [distance=7.642857142857142]: 2012000326 = [3.000]
1.0 : [distance=11.357142857142858]: 2012000327 = [22.000]
1.0 : [distance=5.642857142857143]: 2012000331 = [5.000]
1.0 : [distance=7.642857142857142]: 2012000332 = [3.000]
1.0 : [distance=10.357142857142858]: 2012000333 = [21.000]
1.0 : [distance=8.642857142857142]: 2012000339 = [2.000]
1.0 : [distance=5.642857142857143]: 2012000340 = [5.000]
1.0 : [distance=3.6428571428571423]: 2012000344 = [7.000]
VL-20{n=5 c=[79.800] r=[15.419]}
Weight : [props - optional]: Point:
1.0 : [distance=1.7999999999999972]: 2012000341 = [78.000]
1.0 : [distance=13.800000000000018]: 2012000343 = [66.000]
1.0 : [distance=29.200000000000053]: 2012000345 = [109.000]
1.0 : [distance=11.800000000000068]: 2012000346 = [68.000]
1.0 : [distance=1.7999999999999972]: 2012000347 = [78.000]
VL-25{n=13 c=[44.385] r=[8.553]}
Weight : [props - optional]: Point:
1.0 : [distance=11.615384615384592]: 2012000319 = [56.000]
1.0 : [distance=0.6153846153846132]: 2012000322 = [45.000]
1.0 : [distance=11.615384615384592]: 2012000325 = [56.000]
1.0 : [distance=2.384615384615403]: 2012000328 = [42.000]
1.0 : [distance=4.61538461538464]: 2012000329 = [49.000]
1.0 : [distance=3.384615384615356]: 2012000330 = [41.000]
1.0 : [distance=10.38461538461539]: 2012000334 = [34.000]
1.0 : [distance=15.384615384615387]: 2012000335 = [29.000]
1.0 : [distance=1.3846153846153868]: 2012000336 = [43.000]
1.0 : [distance=9.615384615384606]: 2012000337 = [54.000]
1.0 : [distance=8.384615384615397]: 2012000338 = [36.000]
1.0 : [distance=9.615384615384606]: 2012000342 = [54.000]
1.0 : [distance=6.384615384615375]: 2012000348 = [38.000]
上述结果的输出等同于在Eclipse中编写的ClusterDumper,如下:
public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, double t1, double t2,
double convergenceDelta, int maxIterations) throws Exception {
Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
log.info("Preparing Input");
TagInputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
log.info("Running Canopy to get initial clusters");
Path canopyOutput = new Path(output, "canopies");
CanopyDriver.run(new Configuration(), directoryContainingConvertedInput, canopyOutput, measure, t1, t2, false, 0.0,
false);
log.info("Running KMeans");
TagKMeansDriver.run(conf, directoryContainingConvertedInput, new Path(canopyOutput, Cluster.INITIAL_CLUSTERS_DIR
+ "-final"), output, convergenceDelta, maxIterations, true, 0.0, false);
// run ClusterDumper
ClusterDumper clusterDumper = new ClusterDumper(new Path(output, "clusters-*-final"), new Path(output,
"clusteredPoints"));
clusterDumper.printClusters(null);
}
其他前提操作:
kelvin@Master:~/UntarFile/hadoop2CDH4$ bin/hadoop fs -put ./../mahout-0.7-cdh4.5.0/output/* /TagOutput
14/06/06 01:53:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
kelvin@Master:~/UntarFile/hadoop2CDH4$ bin/hadoop fs -ls /TagOutput
14/06/06 01:53:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 15 items
-rw-r--r-- 1 kelvin supergroup 194 2014-06-06 01:53 /TagOutput/_policy
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusteredPoints
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-0
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-1
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-10-final
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-2
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-3
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-4
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-5
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-6
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-7
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-8
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/clusters-9
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/data
drwxr-xr-x - kelvin supergroup 0 2014-06-06 01:53 /TagOutput/random-seeds
mahout学习的更多相关文章
- 转】Mahout学习路线图
原博文出自于: http://blog.fens.me/hadoop-mahout-roadmap/ 感谢! Mahout学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目 ...
- mahout第一篇-----Mahout学习路线图
Mahout学习路线图 前言 Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架.Mahout是一个跨学科产品,同时也是我认为Hadoop家 ...
- Mahout学习路线图
转自:http://blog.fens.me/hadoop-mahout-roadmap/ Mahout学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, ...
- Mahout学习路线图-张丹老师
前言 Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架.Mahout是一个跨学科产品,同时也是我认为Hadoop家族中,最有竞争力,最难掌 ...
- Hadoop里的数据挖掘应用-Mahout——学习笔记<三>
之前有幸在MOOC学院抽中小象学院hadoop体验课. 这是小象学院hadoop2.X的笔记 由于平时对数据挖掘做的比较多,所以优先看Mahout方向视频. Mahout有很好的扩展性与容错性(基于H ...
- Mahout学习之Mahout简介、安装、配置、入门程序测试
一.Mahout简介 查了Mahout的中文意思——驭象的人,再看看Mahout的logo,好吧,想和小黄象happy地玩耍,得顺便陪陪这位驭象人耍耍了... 附logo: (就是他,骑在象头上的那个 ...
- Mahout学习之Mahout简单介绍、安装、配置、入门程序測试
一.Mahout简单介绍 查了Mahout的中文意思--驭象的人,再看看Mahout的logo,好吧,想和小黄象happy地玩耍,得顺便陪陪这位驭象人耍耍了... 附logo: (就是他,骑在象头上的 ...
- mahout学习-1
一. 安装软件 需要安装如下文件: java, Eclipse, Maven,Hadoop,mahout 二. 推荐系统简介 每天,我们都会对一些事物表达自己的看法,喜欢,或不喜欢,或不在乎.这些都在 ...
- Mahout学习资料
Apache Mahout 简介 http://www.ibm.com/developerworks/cn/java/j-mahout/ 从源代码剖析Mahout推荐引擎 http://blog.fe ...
随机推荐
- 2018.08.19 NOIP模拟 dp(二分+状压dp)
Dp 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 一块土地有 n 个连续的部分,用 H[1],H[2],-,H[n] 表示每个部分的最初高度.有 n 种泥土可用,他们都能覆盖连续 ...
- 2018.07.20 bzoj3211: 花神游历各国(线段树)
传送门 维护区间开方,区间求和.这个是线段树常规操作. 显然一个数被开方若干次之后要么是1,要么是0,所以用线段树维护区间最大和区间和,如果区间最大不超过1就剪枝剪掉,不然就继续递归直到叶节点时停下进 ...
- 2018.07.07 洛谷 P3939 数颜色(主席树)
P3939 数颜色 题目背景 大样例下发链接:http://pan.baidu.com/s/1c0LbQ2 密码:jigg 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不 ...
- hdu-1133
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1133 思路:有m个人拿50元的纸币,n个人拿100元的纸币门票价格是50元,要求每个售票员遇到100元 ...
- ABP框架系列之七:(About-关于ABP)
Considerations Source codes Contributors Contact ASP.NET Boilerplate is designed to help us to devel ...
- s111 stark组件
内容回顾: 1. 类当做key 2. django中的model所在app名称.以及小写类名. def index(request): # print(m1.UserInfo,m1.UserInfo. ...
- ASP.NET 中 <%= %> 与 <%: %> 的区别
做个备忘 <%= %> 内容原封不动输出 <%: %> 对内容进行编码后输出 即:<%: str %> 等价于 <%= Html.Encode(str) %& ...
- 打开AVD时报”Data partition already in use. Changes will not persist!”
错误信息 WARNING: Data partition already in use. Changes will not persist! WARNING: SD Card image alread ...
- <mvc:annotation-driven />到底帮我们做了啥
一句 <mvc:annotation-driven />实际做了以下工作:(不包括添加自己定义的拦截器) 我们了解这些之后,对Spring3 MVC的控制力就更强大了,想改哪就改哪里. s ...
- 解决 EntityFrameworkCore 执行 Add-Migration命令提示无法识别转义符的错误
版本.asp.net core 2.0 EntityFrameworkCore2,0,. 之前执行Add-Migration 命令 提示无法识别的转义序列,各种不成功, 解决办法,找到 项目里面的 ...