Implementation:Segment Tree 线段树
早就听人提起过线段树,今天有题搞不出来,讨论上说要用一下线段树,看了下,本质上是空间划分索引,只不过是一维上面的,如果在二维则是四叉树,三维则是八叉树,如果可以动态调整那么跟R-Tree就很相似了,他们都可以对范围查询做出响应。参照书上写了一个,虽然不多,但是渣渣也写的很是费力
#include <iostream>
#include <cstdlib>
#include <vector> using namespace std; class SegmentTree {
private:
int *mem;
int capacity;
int storage_size;
private:
void init_level_update() {
int k = capacity - ;
while (--k >= ) {
int L = (k<<) + ;
int R = L + ;
mem[k]= min(mem[L], mem[R]);
}
} int query(int a, int b, int idx, int L, int R) {
if (b <= L || a >= R) return INT_MAX;
if (a <= L && R <= b) return mem[idx]; int ml = query(a, b, (idx<<) + , L, (L+R)/);
int mr = query(a, b, (idx<<) + , (L+R)/, R);
return min(ml, mr);
} void init_mem(int _capacity) {
if (_capacity <= ) {
capacity = ;
return;
}
int n = ;
while (n < _capacity) n<<=;
capacity = n;
storage_size = capacity * - ;
mem = new int[storage_size]; int k = ;
while (k < storage_size) mem[k++] = INT_MAX;
}
public:
SegmentTree(int _capacity) {
init_mem(_capacity);
}
SegmentTree(vector<int>::iterator begin, vector<int>::iterator end) {
capacity = end - begin;
init_mem(capacity); int k = capacity - ;
vector<int>::iterator iter = begin;
while (iter != end) mem[k++] = *iter++; init_level_update();
}
~SegmentTree() {
delete[] mem;
} // update value in original data index
void update(int idx, int val) {
if (idx >= capacity || idx < ) return;
int k = idx + capacity - ; // internal storage index
mem[k] = val;
while (k > ) {
k = (k - ) >> ;
int L = (k << ) + ;
int R = L + ;
mem[k] = min (mem[L], mem[R]);
}
} // retrive the min value in index range [a, b)
int query(int a, int b) {
return query(a, b, , , capacity);
} void print_mem(const char* msg) {
cout<<msg<<endl;
for (int i=; i<(capacity*-); i++) {
cout<<mem[i]<<" ";
}
cout<<endl;
}
}; void test(const char* msg, SegmentTree& seg_tree, int* data, int size) {
cout<<msg<<endl;
for (int i=; i<=size; i++) {
for (int j=i+; j<=size; j++) {
int tmin = seg_tree.query(i, j);
cout<<"min of ("<<i<<","<<j<<") = "<<tmin<<endl;
int amin = INT_MAX;
for (int k=i; k<j; k++) if (data[k] < amin) amin = data[k];
if (amin != tmin)
cout<<"fail"<<endl;
else
cout<<"ok"<<endl;
}
}
}
int main() {
int h[] = {, , , , , , };
int size= sizeof(h) / sizeof(int);
vector<int> hs(h, h + size); SegmentTree seg_tree(hs.begin(), hs.end());
test("Test construction with data :", seg_tree, h, size); SegmentTree init_empty_tree(size);
for (int i=; i<size; i++) init_empty_tree.update(i, h[i]);
test("Test construction without data", init_empty_tree, h, size); system("pause");
return ;
}
下面是一个带有返回最小值索引值的改进版本
class SegmentTree {
private:
int *mem;
int *idx;
int capacity;
int storage_size;
private:
void init_level_update() {
int k = capacity - ;
while (--k >= ) {
int L = (k<<) + ;
int R = L + ;
if (mem[L] < mem[R]) {
mem[k] = mem[L];
idx[k] = idx[L];
} else {
mem[k] = mem[R];
idx[k] = idx[R];
}
}
}
pair<int, int> query(int a, int b, int idx, int L, int R) {
if (b <= L || a >= R) return make_pair(INT_MAX, -);
if (a <= L && R <= b) return make_pair(mem[idx], this->idx[idx]);
pair<int, int> ml = query(a, b, (idx<<) + , L, (L+R)/);
pair<int, int> mr = query(a, b, (idx<<) + , (L+R)/, R);
return ml.first < mr.first ? ml : mr;
}
void init_mem(int _capacity) {
if (_capacity <= ) {
capacity = ;
return;
}
int n = ;
while (n < _capacity) n<<=;
capacity = n;
storage_size = capacity * - ;
mem = new int[storage_size];
idx = new int[storage_size];
int k = ;
while (k < storage_size) mem[k++] = INT_MAX;
k = capacity - ;
int i = ;
while (k < storage_size) idx[k++] = i++;
}
public:
SegmentTree(int _capacity) {
init_mem(_capacity);
}
SegmentTree(vector<int>::iterator begin, vector<int>::iterator end) {
capacity = end - begin;
init_mem(capacity);
int k = capacity - ;
vector<int>::iterator iter = begin;
while (iter != end) mem[k++] = *iter++;
init_level_update();
}
~SegmentTree() {
delete[] mem;
delete[] idx;
}
// update value in original data index
void update(int index, int val) {
if (index >= capacity || idx < ) return;
int k = index + capacity - ; // internal storage index
mem[k] = val;
while (k > ) {
k = (k - ) >> ;
int L = (k << ) + ;
int R = L + ;
if (mem[L] < mem[R]) {
mem[k] = mem[L];
idx[k] = idx[L];
} else {
mem[k] = mem[R];
idx[k] = idx[R];
}
}
}
// retrive the min value in index range [a, b)
pair<int, int> query(int a, int b) {
return query(a, b, , , capacity);
}
void print_mem(const char* msg) {
cout<<msg<<endl;
for (int i=; i<(capacity*-); i++) {
cout<<mem[i]<<" ";
}
for (int i=; i<capacity * - ; i++) {
cout<<idx[i]<<",";
}
cout<<endl;
}
};
参考:
挑战程序设计竞赛第二版
Implementation:Segment Tree 线段树的更多相关文章
- HDU 4107 Gangster Segment Tree线段树
这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...
- SPOJ 11840. Sum of Squares with Segment Tree (线段树,区间更新)
http://www.spoj.com/problems/SEGSQRSS/ SPOJ Problem Set (classical) 11840. Sum of Squares with Segme ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- codeforces 242E - XOR on Segment (线段树 按位数建树)
E. XOR on Segment time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
- Luogu P4097 [HEOI2013]Segment 李超线段树
题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...
- BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)
BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...
- HDU 3333 Turing Tree (线段树)
Turing Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- CodeForces 620E New Year Tree(线段树的骚操作第二弹)
The New Year holidays are over, but Resha doesn't want to throw away the New Year tree. He invited h ...
- HDU 3333 Turing Tree 线段树+离线处理
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Othe ...
随机推荐
- hot code loading in nodejs
Hot Code Loading in Node.js Node.js Web应用代码热更新的另类思路 Reading through Fever today, this post by Jack M ...
- 设置jade高亮
来自:https://segmentfault.com/a/1190000002896247 打开sublime3,再打开 view > show console,把下列代码复制到console ...
- iOS-实现对象拷贝【对象拷贝】
对象引用 NSCopying 代理 .h @interface xk : NSObject <NSCopying> @property (nonatomic, copy) NSString ...
- 移动端页面模板viewport
<!DOCTYPE html><html> <head> <meta charset="utf-8" /> <meta nam ...
- Swift循环遍历集合方法
第一种方式:for-in循环 OC延续了C语言的for循环,在Swift中被彻底改造,我们无法再使用传统形式的for循环了 遍历数组和字典: //遍历数组 let iosArray = [&quo ...
- Ethereum White Paper
https://github.com/ethereum/wiki/wiki/White-Paper White Paper EditNew Page James Ray edited this pag ...
- 获取dictionary 值连续相同的索引,
; i < ;) { , i]; var rangType = companyScheme[i]; string txtCell = ""; switch (rangType ...
- 剑指offer五十六之删除链表中重复的结点
一.题目 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处理后 ...
- (转) MySQL分区与传统的分库分表
传统的分库分表 原文:http://blog.csdn.net/kobejayandy/article/details/54799579 传统的分库分表都是通过应用层逻辑实现的,对于数据库层面来说,都 ...
- Sequel-Model
Sequel::Model Mass Assignment 大多数的Model方法接受一个包含一系列key和value的哈希作为参数,这些方法包括:Model.new, Model.create, M ...