BZOJ2958 序列染色(动态规划)
令f[i][0/1/2][0/1]表示前i位,不存在满足要求的B串和W串/存在满足要求的B串不存在W串/存在满足要求的B串和W串,第i位填的是B/W的方案数。转移时考虑连续的一段填什么。大讨论一波后瞎优化一波就成线性的了。k=1应该是要特判一下的不过数据里没有那就不管了。
成功的把这么短的题面都看错了一次。弱智dp写的心态爆炸。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define P 1000000007
int n,m,a[N],pre[N][],p[],f[N][][],delta[][];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2958.in","r",stdin);
freopen("bzoj2958.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
char c=getchar();while (c<'A'||c>'Z') c=getchar();
for (int i=;i<=n;i++)
{
a[i]=(c=='X')?:(c=='B'?:);
if (a[i]<) p[a[i]]=i;
pre[i][]=p[];pre[i][]=p[];
c=getchar();
}
a[]=;
f[][][]=f[][][]=;
delta[][]=(a[]!=),delta[][]=(a[]!=);
for (int i=;i<=n;i++)
{
f[i][][]=delta[][],f[i][][]=delta[][],f[i][][]=delta[][];
f[i][][]=delta[][],f[i][][]=delta[][],f[i][][]=delta[][];
inc(delta[][],f[i][][]);inc(delta[][],f[i][][]);inc(delta[][],f[i][][]);
inc(delta[][],f[i][][]);inc(delta[][],f[i][][]);inc(delta[][],f[i][][]);
if (pre[i+][]<i-m+)
{
inc(delta[][],(P-f[i-m+][][])%P);
inc(delta[][],f[i-m+][][]);
}
if (pre[i+][]<i-m+)
{
inc(delta[][],(P-f[i-m+][][])%P);
inc(delta[][],f[i-m+][][]);
}
if (a[i+]==) delta[][]=delta[][]=delta[][]=;
if (a[i+]==) delta[][]=delta[][]=delta[][]=;
}
cout<<(f[n][][]+f[n][][])%P;
return ;
}
BZOJ2958 序列染色(动态规划)的更多相关文章
- bzoj2958: 序列染色(DP)
2958: 序列染色 题目:传送门 题解: 大难题啊(还是我太菜了) %一发大佬QTT 代码: #include<cstdio> #include<cstring> #incl ...
- BZOJ2958 序列染色
果然清华集训的题目...显然的DP题但是不会做... 我们令f[i][j][w]表示状态方程 w表示到了字符串的第w个 i = 0, 1, 2分别表示k个B和k个W都没填上.k个B填上了k个W没填上. ...
- bzoj2958: 序列染色&&3269: 序列染色
DP这种东西,考场上就只能看命了.. #include<cstdio> #include<iostream> #include<cstring> #include& ...
- BZOJ:2958 序列染色 DP
bzoj2958 序列染色 题目传送门 Description 给出一个长度为N由B.W.X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个. 对于给出的K,问有多少种染色方式使得存在整数a ...
- 【BZOJ1489】[HNOI2009]双递增序列(动态规划)
[BZOJ1489][HNOI2009]双递增序列(动态规划) 题面 BZOJ 洛谷 题解 这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二 ...
- 【BZOJ1046】上升序列(动态规划,贪心)
[BZOJ1046]上升序列(动态规划,贪心) 题面 BZOJ 洛谷 题解 我一开始看错题了,一度以为是字典序最小的序列. 最后发现它要求的字典序是位置的字典序最小. 那就很好办了. 设\(f[i]\ ...
- Leetcode 413. Arithmetic Slice 算术序列切片(动态规划,暴力)
Leetcode 413. Arithmetic Slice 算术序列切片(动态规划,暴力) 题目描述 如果一个数组1.至少三个元素2.两两之间差值相同,那么这个数组就是算术序列 比如下面的数组都是算 ...
- 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...
- bzoj 1304 [CQOI 2009] 叶子的染色 - 动态规划
题目传送门 快速的传送门 慢速的传送门 题目大意 给定一棵无根树,每个点可以染成黑色或者白色,第$i$叶节点到根的路径上最后有颜色的点必须为$c_{i}$(叶节点可以染色).问最少要染颜色的点的个数. ...
随机推荐
- Jenkins +svn +maven +tomcat+ ansible 自动化批量部署
Jenkins +svn +maven +tomcat+ ansible 自动化批量部署 一.部署svn yum install subversion 先创建目录 mkdir /home/svn 创建 ...
- 接口测试中抓包工具Charles的使用
在被测接口并没有明确的接口文档给出时,我们需要借助抓包工具来帮助测试,利用抓包工具我们几乎可以获得接口文档中能给你的一切.常见的抓包工具有Charles和Fiddler, Fiddler只能用在Win ...
- 使用CDN后配置nginx自定义日志获取访问用户的真实IP
问题描述: 新上线了一个项目,架构如下(简单画的理解就好): 问题是:负载前面加上CDN后负载这里无法获取客户的真实访问IP,只能过去到CDN的IP地址: 问题解决: 修改nginx日 ...
- CentOS7上部署ASP.Net Core 2.2应用
前言 在CentOS7上部署ASP.Net Core应用是我的技术路线验证的一部分,下一个产品计划采用ASP.Net Boilerplate Framework开发.因此需要求提前进行一下技术验证,在 ...
- SQL Server存储过程用法介绍
存储过程其实就是已预编译为可执行过程的一个或多个SQL语句. 通过调用和传递参数即可完成该存储过程的功能. 前面有介绍过存储过程的一些语法,但是没有详细示例,今天我们来一起研究一下存储过程. 提高性能 ...
- 学习python,第四篇:Python 3中bytes/string的区别
原文:http://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3 python 3中最重要的新特性可能就是将文 ...
- python—多任务版udp聊天机器人
将多任务(多线程)引入到udp聊天机器人,可以实现同时发送消息和接收消息 import socket import threading def udp_send(udp_socket,ip,port) ...
- noip2018 D1T3 赛道修建
题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...
- 2017年软件工程作业-“Hello World!”团队互评beta版本
A.欢迎来怼——博客园安卓APP(测评人:刘淑霞) 博客地址:http://www.cnblogs.com/liusx0303/p/7905928.html B.Thunder——爱阅app(测评人: ...
- Beta周王者荣耀交流协会第五次Scrum会议
1. 立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:王磊 2. 时间跨度 2017年11月14日 19:00 — 19:50 ,总计50分钟. 3. 地点 一食 ...