题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】
Description
\(n\) 个数的序列,每次询问一个区间,求最小的一个数使得不能用这个区间中的数之和表示。
\(n \leq 10^5, \sum a_i \leq 10^9\)
这两个题一个是权限一个没有真是很方所以我在洛谷交
Solution
第一次用数组写数据结构真短啊
考虑只有一次询问怎么做
把给定的区间内的数排序,从小到大扫一遍。
如果一个数比他之前的数之和至少大了 \(1\) ,那么答案就是和 + 1
否则就可以把\([1,\text{前缀和}]\) 都表示出来(感性理解很容易)
这道题怎么做也就显然了起来。只需要用主席树维护区间中小于等于某个数的数之和即可。流程如下
当前答案是 \(a\),令 \(S\) 是区间中 \(\leq a\) 的数之和
- 如果 \(S < a\) 则 \(a\) 就是最后的答案
- 否则 让 \(a = S+1\) 然后重复此操作
最开始的时候 \(a=1\)
这样做的话 \(a\) 每次都会翻一倍,所以最后的总复杂度是 \(O(m \log n \log \sum a_i)\)
Code
我写的是动态开点的线段树维护的主席树
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 50000500;
const int L = 1000000000;
int n, m, a[N], cnt;
int root[N], ch[N][2]; ll sum[N];
inline void I (int pre, int now, int l, int r, int val) {
ch[now][0] = ch[pre][0], ch[now][1] = ch[pre][1];
int mid = (l + r) >> 1; sum[now] = sum[pre] + val; if(l == r) return ;
if(val <= mid) ch[now][0] = ++cnt, I(ch[pre][0], ch[now][0], l, mid, val);
else ch[now][1] = ++cnt, I(ch[pre][1], ch[now][1], mid + 1, r, val);
}
inline int Q(int pre, int now, int l, int r, int val) {
if(l == r) return sum[now] - sum[pre]; int mid = (l + r) / 2;
if(val <= mid) return Q(ch[pre][0], ch[now][0], l, mid, val);
else return sum[ch[now][0]] - sum[ch[pre][0]] + Q(ch[pre][1], ch[now][1], mid + 1, r, val);
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]); root[i] = ++cnt;
I(root[i - 1], root[i], 1, L, a[i]);
} scanf("%d", &m);
for(int i = 1; i <= m; i++) {
int l, r; scanf("%d %d", &l, &r);
int ans = 1;
int S; while(1) {
S = Q(root[l - 1], root[r], 1, L, ans);
if(S < ans) { printf("%d\n", ans); break ; }
else ans = S + 1;
}
}
return 0;
}
题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】的更多相关文章
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- [bzoj4408][Fjoi2016]神秘数
Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...
- 【BZOJ4408】[FJOI2016]神秘数(主席树)
[BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...
- 【LG4587】[FJOI2016]神秘数
[LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...
- BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...
- [FJOI2016]神秘数(脑洞+可持久化)
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- Luogu P4587 [FJOI2016]神秘数
一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...
- 【BZOJ-4408】神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 475 Solved: 287[Submit][Status ...
- BZOJ 4408 FJOI2016 神秘数 可持久化线段树
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...
随机推荐
- 解决iscroll.js上拉下拉刷新手指划出屏幕页面无法回弹问题
博客已迁移至http://zlwis.me. 使用过iscroll.js的上拉下拉刷新效果的朋友应该都碰到过这个问题:在iOS的浏览器中,上拉或下拉刷新时,当手指划出屏幕后,页面无法弹回.很多人因为解 ...
- kafka启动报错:另一个程序正在使用此文件,进程无法访问。
在Windows上启动kafka_2.12-1.1.0报以下错误:[2018-05-08 10:24:51,777] ERROR Failed to clean up log for __consum ...
- java把map转json
JSONUtils.toJSONString(requestMap); com.alibaba.fastjson.JSON <!-- https://mvnrepository.com/a ...
- 20172319 2018.04.11-16 《Java程序设计教程》 第6周学习总结
20172319 2018.04.11-16 <Java程序设计教程>第6周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...
- Week2-作业一——《构建之法》三章精读之想
Week2-作业一——精读<构建之法> 前言 其实我本人是不经常看书的,电子书倒是看了不少,实体书真的不经常看,但是为了这次作业的需求,我还是选择静下心来阅读一下这本<构建之法> ...
- Linux(Red hat)无网离线安装TensorFlow
文件下载 首先,下载想要安装的版本,目前最新的是1.8.0 根据你的python版本下载对应的whl文件,下载连接:https://pypi.org/project/tensorflow/#files ...
- 对WEB url 发送POST请求
package com.excellence.spark; import java.util.List; import com.excellence.spark.test.test; import c ...
- SQL语句中 chinese_prc_CS_AI_WS 以及replace用法
Select * from [DBData].[dbo].[T_Student] where Name='lilei' 查询结果如下: 结论:由查询结果可知 SQL Server ...
- Augmenting DOM Storage with IE's userData behavior
http://www.javascriptkit.com/javatutors/domstorage2.shtml Augmenting DOM Storage with IE's userData ...
- ZOJ3733_Skycity
这...水题.可惜坑了无数发. 显然对于当前的半径的园,多边形的边数越多,周长越短,面积也就越小. 一开始我是用二分去做的,事实证明也是可以的,只是我坑了. 其实没必要去用二分哦,这样来考虑这问题. ...