Description

\(n\) 个数的序列,每次询问一个区间,求最小的一个数使得不能用这个区间中的数之和表示。

\(n \leq 10^5, \sum a_i \leq 10^9\)

这两个题一个是权限一个没有真是很方所以我在洛谷交

Solution

第一次用数组写数据结构真短啊

考虑只有一次询问怎么做

把给定的区间内的数排序,从小到大扫一遍。

如果一个数比他之前的数之和至少大了 \(1\) ,那么答案就是和 + 1

否则就可以把\([1,\text{前缀和}]\) 都表示出来(感性理解很容易)

这道题怎么做也就显然了起来。只需要用主席树维护区间中小于等于某个数的数之和即可。流程如下

当前答案是 \(a\),令 \(S\) 是区间中 \(\leq a\) 的数之和

  1. 如果 \(S < a\) 则 \(a\) 就是最后的答案
  2. 否则 让 \(a = S+1\) 然后重复此操作

最开始的时候 \(a=1\)

这样做的话 \(a\) 每次都会翻一倍,所以最后的总复杂度是 \(O(m \log n \log \sum a_i)\)

Code

我写的是动态开点的线段树维护的主席树

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 50000500;
const int L = 1000000000;
int n, m, a[N], cnt;
int root[N], ch[N][2]; ll sum[N];
inline void I (int pre, int now, int l, int r, int val) {
ch[now][0] = ch[pre][0], ch[now][1] = ch[pre][1];
int mid = (l + r) >> 1; sum[now] = sum[pre] + val; if(l == r) return ;
if(val <= mid) ch[now][0] = ++cnt, I(ch[pre][0], ch[now][0], l, mid, val);
else ch[now][1] = ++cnt, I(ch[pre][1], ch[now][1], mid + 1, r, val);
}
inline int Q(int pre, int now, int l, int r, int val) {
if(l == r) return sum[now] - sum[pre]; int mid = (l + r) / 2;
if(val <= mid) return Q(ch[pre][0], ch[now][0], l, mid, val);
else return sum[ch[now][0]] - sum[ch[pre][0]] + Q(ch[pre][1], ch[now][1], mid + 1, r, val);
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]); root[i] = ++cnt;
I(root[i - 1], root[i], 1, L, a[i]);
} scanf("%d", &m);
for(int i = 1; i <= m; i++) {
int l, r; scanf("%d %d", &l, &r);
int ans = 1;
int S; while(1) {
S = Q(root[l - 1], root[r], 1, L, ans);
if(S < ans) { printf("%d\n", ans); break ; }
else ans = S + 1;
}
}
return 0;
}

题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】的更多相关文章

  1. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  2. [bzoj4408][Fjoi2016]神秘数

    Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...

  3. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  4. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  5. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

  6. [FJOI2016]神秘数(脑洞+可持久化)

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  7. Luogu P4587 [FJOI2016]神秘数

    一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...

  8. 【BZOJ-4408】神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 475  Solved: 287[Submit][Status ...

  9. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

随机推荐

  1. 数据库之python操作mysql

    目录 一.pymysql 二.SQLAchemy 2.操作使用 (1)连接数据库 (2)执行原生SQL语句 (3)ORM操作-数据表操作 (4)ORM操作-数据行操作 (5)更多例子 一.pymysq ...

  2. Daily Srum 10.30

    Android那一组打算用SQL Server这个关系型数据库,而王鹿鸣他们一组却是依赖于Hbase,这是一件很麻烦的事,所以我打算在这两方面都建立一个数据库.虽然挺麻烦,但是还是为了扩展性所做的必要 ...

  3. web04-LoginServlet

    电影网站:www.aikan66.com项目网站:www.aikan66.com游戏网站:www.aikan66.com图片网站:www.aikan66.com书籍网站:www.aikan66.com ...

  4. Task 4 求数组的连续子数组的最大和(团队合作)

    小组成员:李敏.刘子晗 1.设计思想:由于已经做过这个题目,只要对之前的程序加上相应的测试和约束即可.我们两个人一起商议后,决定了程序的主框架和并列出了最终可以实现的功能.先要定义数组长度和上下限的变 ...

  5. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  6. eg_8

    问题描述:比较两数组是否相等 Demo_1: import java.util.Arrays; public class TestArray { public static void main(Str ...

  7. Unity3D游戏开发——收集当前关卡游戏中分散的物件

    运用场景 许多游戏中会有一些供玩家拾起的物件,例如装备.血包.道具等.当玩家与物件进行碰撞后,则会进入仓库. 本篇介绍了简单的碰撞过程. 原理 基本的碰撞机制,用到OnTriggerEnter()碰撞 ...

  8. git的使用(本地及关联远程,上传到远程)

    前言:本想这个博客就是用来交作业的,因为作业,学习了git ,现在觉得,既然有这个博客了,就好好用一下吧,也给自己养成个好习惯,就也来记录一下吧,关于git的本地仓库上传,本地与远程的关联,从本地上传 ...

  9. Week4-作业1:《构建之法》第四章、第十七章 阅读笔记与思考

    第四章 两人合作   这一章是讲述了两人结对编程的一些东西,包括一些代码的规范,还有结对编程的优点.怎么做.以及一些注意事项. 1.“错误处理 当程序的主要功能实现后,一些程序员会乐观地估计只需要另外 ...

  10. angularJS1笔记-(10)-自定义指令(templateUrl属性)

    index.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...