题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】
Description
\(n\) 个数的序列,每次询问一个区间,求最小的一个数使得不能用这个区间中的数之和表示。
\(n \leq 10^5, \sum a_i \leq 10^9\)
这两个题一个是权限一个没有真是很方所以我在洛谷交
Solution
第一次用数组写数据结构真短啊
考虑只有一次询问怎么做
把给定的区间内的数排序,从小到大扫一遍。
如果一个数比他之前的数之和至少大了 \(1\) ,那么答案就是和 + 1
否则就可以把\([1,\text{前缀和}]\) 都表示出来(感性理解很容易)
这道题怎么做也就显然了起来。只需要用主席树维护区间中小于等于某个数的数之和即可。流程如下
当前答案是 \(a\),令 \(S\) 是区间中 \(\leq a\) 的数之和
- 如果 \(S < a\) 则 \(a\) 就是最后的答案
- 否则 让 \(a = S+1\) 然后重复此操作
最开始的时候 \(a=1\)
这样做的话 \(a\) 每次都会翻一倍,所以最后的总复杂度是 \(O(m \log n \log \sum a_i)\)
Code
我写的是动态开点的线段树维护的主席树
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 50000500;
const int L = 1000000000;
int n, m, a[N], cnt;
int root[N], ch[N][2]; ll sum[N];
inline void I (int pre, int now, int l, int r, int val) {
ch[now][0] = ch[pre][0], ch[now][1] = ch[pre][1];
int mid = (l + r) >> 1; sum[now] = sum[pre] + val; if(l == r) return ;
if(val <= mid) ch[now][0] = ++cnt, I(ch[pre][0], ch[now][0], l, mid, val);
else ch[now][1] = ++cnt, I(ch[pre][1], ch[now][1], mid + 1, r, val);
}
inline int Q(int pre, int now, int l, int r, int val) {
if(l == r) return sum[now] - sum[pre]; int mid = (l + r) / 2;
if(val <= mid) return Q(ch[pre][0], ch[now][0], l, mid, val);
else return sum[ch[now][0]] - sum[ch[pre][0]] + Q(ch[pre][1], ch[now][1], mid + 1, r, val);
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]); root[i] = ++cnt;
I(root[i - 1], root[i], 1, L, a[i]);
} scanf("%d", &m);
for(int i = 1; i <= m; i++) {
int l, r; scanf("%d %d", &l, &r);
int ans = 1;
int S; while(1) {
S = Q(root[l - 1], root[r], 1, L, ans);
if(S < ans) { printf("%d\n", ans); break ; }
else ans = S + 1;
}
}
return 0;
}
题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】的更多相关文章
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- [bzoj4408][Fjoi2016]神秘数
Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...
- 【BZOJ4408】[FJOI2016]神秘数(主席树)
[BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...
- 【LG4587】[FJOI2016]神秘数
[LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...
- BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...
- [FJOI2016]神秘数(脑洞+可持久化)
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- Luogu P4587 [FJOI2016]神秘数
一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...
- 【BZOJ-4408】神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 475 Solved: 287[Submit][Status ...
- BZOJ 4408 FJOI2016 神秘数 可持久化线段树
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...
随机推荐
- 作业要求 20181127-5 Beta发布用户使用报告
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2450 一.用户反馈 反馈截图(部分) 三.用户反馈情况统计图
- mysql更新表数据时报错 You can't specify target table 'RES_CATALOG_CLASSIFY' for update in FROM clause
You can't specify target table for update in FROM clause含义:不能在同一表中查询的数据作为同一表的更新数据. 将sql语句 UPDATE RES ...
- 暑假作业app博客
一.光照传感器 界面 简介 运用了传感器类,通过手机的感应区根据当时的光照强度显示出数据. 核心代码 protected void onCreate(Bundle savedInstanceState ...
- java 框架 面试 2
1.谈谈你对Struts的理解. 答: 1. struts是一个按MVC模式设计的Web层框架,其实它就是一个大大的servlet,这个Servlet名为ActionServlet,或是ActionS ...
- java 面试 -- 4
Java面试知识点总结 本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有 ...
- caffe with anaconda
https://blog.csdn.net/u013498583/article/details/74231058 https://www.cnblogs.com/youxin/p/4073703.h ...
- Reaction to 构造之法 of Software Engineering From The First Chapter toThe Fifth Chapter(补充版)
几个星期前,我阅读过一篇文章,一位老师教导自己的学生要积极地去阅读文学文献,其中,我很欣赏他的一句话:“Just think of liturature as if you're reading a ...
- 守护线程(Daemon Thread)
在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...
- KEIL C51代码优化详细分析
阅读了<单片机与嵌入式系统应用>2005年第10期杂志<经验交流>栏目的一篇文章<Keil C51对同一端口的连续读取方法>(原文)后,笔者认为该文并未就此问题进行 ...
- spring时间管理
spring时间管理相比Quartz要简单的多,但功能不如quartz强大 spring.xml的配置 <?xml version="1.0" encoding=" ...