这个ai<=2000有点意思

启发我们用O(W^2)的算法

FFT不存在,对应关系过紧

考虑组合意义转化建模,再进行分离

(除以2不需要逆元不懂为啥,但是算个逆元总不费事)

由于终点可能在起点的右下,所以,从左上到右下要再做一遍

但是每个终点正上方的起点统计了两次,再减掉即可

(注意大力卡常:

1.s2[i][j]没有,就不用算了

2.f,ans开long long 尽量减少取模

3.组合数用阶乘计算

#include<bits/stdc++.h>
#define il inline
#define reg register int
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const int M=+;
const int mod=1e9+;
ll f[N][N];
int s1[N][N],s2[N][N];
int jie[N],inv[N];
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
ll mo1(ll x){
return x>=4e12?x%mod:x;
}
ll mo2(ll x){
return x>=?x%mod:x;
}
int n;
int C(int n,int m){
return (ll)jie[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
rd(n);
int a,b;
jie[]=;
for(reg i=;i<=;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[]=qm(jie[],mod-);
for(reg i=;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
ll ans=;
for(reg i=;i<=n;++i){
rd(a);rd(b);
int x=a-b+,y=b+;
s1[x][y]++;
x=-a+b+,y=-b+;
s2[x][y]++;
ans=mo2(ans+mod-C(*a,*b));
}
ans%=mod;
/// cout<<ans<<endl;
for(reg i=4000;i>=1;--i){
for(reg j=;j>=;--j){
f[i][j]=mo1(f[i+][j]+f[i][j+]+s1[i][j]);
if(s2[i][j])ans=mo2(ans+(ll)f[i][j]*s2[i][j]);
}
}
ans%=mod;
// cout<<ans<<endl;
for(reg i=;i<=;++i){
for(reg j=;j>=;--j){
f[i][j]=mo1(f[i-][j]+f[i][j+]+s1[i][j]);
ans=s2[i][j]?(ans+(ll)f[i][j]*s2[i][j])%mod:ans;
s1[i][j]+=s1[i][j+];
ans=s2[i][j]?(ans-(ll)s1[i][j]*s2[i][j]+(ll)*mod)%mod:ans;
}
}
ll inv2=5e8+;
ans=ans*inv2%mod;
printf("%lld",ans);
return ;
} }
signed main(){
freopen("3782.in","r",stdin);
freopen("3782.out","w",stdout);
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/2/8 18:52:17
*/

总结:

核心:转化问题,分离终点和起点

和这个题的最后差分分离思路有异曲同工之处:AGC 018E.Sightseeing Plan——网格路径问题观止

fzyzojP3782 -组合数问题的更多相关文章

  1. AGC 018E.Sightseeing Plan——网格路径问题观止

    原题链接 鸣谢:AGC 018E.Sightseeing Plan(组合 DP) 本蒟蒻认为,本题堪称网格路径问题观止. 因为涵盖了不少网格路径问题的处理方法和思路. 一句话题意: 给你三个矩形. 三 ...

  2. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  3. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  4. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  5. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  6. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  7. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  8. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  9. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. PHP中的__toString() 是什么东西

    __toString()  是魔术方法的一种,具体用途是当一个对象被当作字符串对待的时候,会触发这个魔术方法 以下说明摘自PHP官方手册 public string __toString ( void ...

  2. swoole中退出、异常与错误的处理笔记

    关于PHP这方面的知识 可以看 https://www.cnblogs.com/zyf-zhaoyafei/p/6928149.html 进行补课 然后下面记录一下使用swoole的时候需要注意的地方 ...

  3. hexo主题中添加相册功能

    博客已迁移至http://lwzhang.github.io. 基本上所有的hexo主题默认都没有实现相册功能,一方面相册功能的需求较少,毕竟hexo主要是写博客用的:另一方面实现相册功能比较麻烦,比 ...

  4. Maven学习记录3——创建、编译、打包、运行项目

    http://blog.csdn.net/yaya1943/article/details/48464371

  5. No.10_分数分配

    C#队一共有7名成员,因此团队贡献分一共350分. 分配方式应当反映绝大部分组员的真实贡献情况,即由贡献决定分数. 另外保证一定的奖惩措施,充分调动组员的积极性,鞭策团队向前迈进. 对于团队贡献分数的 ...

  6. 【CSAPP笔记】6. 汇编语言——控制

    原先刊于自己的域名下面,考虑到博客园之前发过一半,不想烂尾,故在博客园发一版. 到目前为止我们只考虑了直线代码的执行行为,也就是指令一条接着一条执行.C语言中的某些语句,比如条件语句.循环.分支语句, ...

  7. BETA-3

    前言 我们居然又冲刺了·三 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 一堆deadline截至前的两天,为了图形学和编译原理毅然决然地放弃冲刺 接下 ...

  8. jquery-numberformatter插件

    项目地址:https://code.google.com/p/jquery-numberformatter/ 非jquery版:https://github.com/andrewgp/jsNumber ...

  9. Objective-C KVC讲解,包你看懂会用

    KVC:Key Value Coding,取其三个单词首字母浓缩而成.直白翻译过来就是键值编码,什么意思呢?简单来说,就是操作一个对象,也可以像操作字典一样,通过key来取值和赋值. 我们先创建一个H ...

  10. grunt入门讲解3:实例讲解使用 Gruntfile 配置任务

    这个Gruntfile 实例使用到了5个 Grunt 插件: grunt-contrib-uglify      grunt-contrib-qunitgrunt-contrib-concatgrun ...