题面

好像是个经典问题,然而我没做过

建SAM,然后经过每个节点的子串数目就可以求了,多个相同子串算一个的话就把所有siz都搞成$1$,否则就是$right$集合的大小,然后就是常见的递推

求第$k$小是从根节点出发按字典序沿着trans往下走,每次输出对应的字符然后扣掉对应的数量

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int fth[M],trs[M][],len[M],siz[M];
int rnk[M],bkt[M]; long long sum[M];
int typ,kth,lth,lst,tot;
char str[N];
void Insert(int ch)
{
int nde=lst,newn=++tot; lst=newn;
siz[newn]=,len[newn]=len[nde]+;
while(nde&&!trs[nde][ch])
trs[nde][ch]=newn,nde=fth[nde];
if(!nde)
fth[newn]=;
else
{
int tran=trs[nde][ch];
if(len[tran]==len[nde]+)
fth[newn]=tran;
else
{
int rnde=++tot; len[rnde]=len[nde]+;
for(int i=;i<=;i++) trs[rnde][i]=trs[tran][i];
fth[rnde]=fth[tran],fth[tran]=fth[newn]=rnde;
while(nde&&trs[nde][ch]==tran)
trs[nde][ch]=rnde,nde=fth[nde];
}
}
}
int main()
{
register int i,j,k;
scanf("%s%d%d",str+,&typ,&kth);
lth=strlen(str+),lst=tot=;
for(i=;i<=lth;i++) Insert(str[i]-'a');
for(i=;i<=tot;i++) bkt[len[i]]++;
for(i=;i<=lth;i++) bkt[i]+=bkt[i-];
for(i=;i<=tot;i++) rnk[bkt[len[i]]--]=i;
for(i=tot;i;i--)
j=rnk[i],typ?siz[fth[j]]+=siz[j]:siz[j]=;
siz[]=;
for(i=tot;i;i--)
{
j=rnk[i],sum[j]=siz[j];
for(k=;k<=;k++)
if(trs[j][k]) sum[j]+=sum[trs[j][k]];
}
if(kth>sum[]) printf("-1");
else
{
int nde=;
while(kth-siz[nde]>)
{
kth-=siz[nde];
for(i=;i<=&&kth>sum[trs[nde][i]];i++)
kth-=sum[trs[nde][i]];
nde=trs[nde][i],printf("%c",i+'a');
}
}
return ;
}

解题:TJOI 2015 弦论的更多相关文章

  1. BZOJ 3998 [TJOI 2015] 弦论 解题报告

    这是一道后缀自动机经典题目. 对于 $t=0$ 的情况:每个节点都代表一个子串,所以我们给每个节点的 $Size$ 都记为 $1$, 对于 $t=1$ 的情况:我们只给 $last$ 节点的 $Siz ...

  2. BZOJ 3997 [TJOI 2015 组合数学] 解题报告

    这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2 ...

  3. BZOJ 3996 [TJOI 2015] 线性代数 解题报告

    首先,我们可以得到: $$D = \sum_{i=1}^{n}\sum_{j=1}^{n}a_i\times a_j\times b_{i,j} - \sum_{i=1}^{n}a_i\times c ...

  4. 解题:TJOI 2015 组合数学

    题面 通过这个题理解了一下反链的概念,更新在图论知识点里了 每个点向右和下连边可以建出一张图,这个题事实上是让我们求图的最小链覆盖.Dilworth定理告诉我们,最小链覆盖等于最长反链(反链:DAG中 ...

  5. TJOI 2015 概率论(生成函数)

    题意 ​ 求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望. 思路 ​ 用生成函数做是个好题. ​ 我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 ...

  6. 后缀自动机(SAM)奶妈式教程

    后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...

  7. 2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)

    官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/ 表 ...

  8. [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告

    [NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...

  9. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

随机推荐

  1. Prometheus 添加报警规则

    https://prometheus.io/docs/prometheus/latest/migration/

  2. Centos7 Jenkins

    代码上线 持续集成 随时随地将代码合并,这种方法叫做持续集成. 持续集成(CONTINUOUS INTEGRATION,简称CI)持续集成指的是,频繁地(一天多次)将代码集成到主干.它的好处主要有两个 ...

  3. export命令详解

    基础命令学习目录首页 export 的基本作用就是将父shell中的局部变量设置为环境变量,使得该变量可以在子shell中使用.下面设置两种情景对export进行原理解析. 情景  1. 有一个名为m ...

  4. nice和renice命令详解

    基础命令学习目录首页 进程调度是linux中非常重要的概念.linux内核有一套高效复杂的调度机制,能使效率极大化,但有时为了实现特定的要求,需要一定的人工干预.比如,你希望操作系统能分配更多的CPU ...

  5. js备忘录3

    JavaScript也有类型转换 js中的获取指定位数的方法 +和-的转换方向不同 在JavaScript中首先给变量赋值数字,然后再给变量赋值字符串是合法的 这点和Java有些区别 在函数体内声明变 ...

  6. Daily Scrum 11.19 部分测试报告

    下面是我们的部分测试报告: 功能测试部分: 1Exception in thread "Thread-11" java.lang.IllegalArgumentException: ...

  7. No.1000_第五次团队会议

    光辉的一夜 今夜注定是不平凡的一夜.是崔强同学伟大的一夜. 昨天因为实验室项目,我刚上完编译课就被学院叫走去做项目,当时我就很无奈,因为说好了要和崔强一起实现下午的前端,他写界面我写底层逻辑,这样我们 ...

  8. 《Spring2之站立会议7》

    <Spring2之站立会议7> 昨天,查相关资料解决debug:: 今天,解决了debug: 遇到问题,一些问题是得到解决了,但是一些还未被解决.

  9. 四则运算(window窗体程序)

    我的第一个程序 忙活了半个下午做出来了,勉强可以见人,虽然还有些瑕疵,但是我也尽力了...... 我做的是一个能对0--10之间的整数进行四则运算的,题目的数据是程序自动生成的,而且程能接收用户输入的 ...

  10. ubuntu16.04安装cuda8.0试错锦集

    ubuntu16.04安装cuda8.0试错锦集 参考文献: [http://www.jianshu.com/p/35c7fde85968] [http://blog.csdn.net/sinat_1 ...