算法学习 - 平衡二叉查找树实现(AVL树)
平衡二叉查找树
平衡二叉查找树是非常早出现的平衡树,由于全部子树的高度差不超过1,所以操作平均为O(logN)。
平衡二叉查找树和BS树非常像,插入和删除操作也基本一样。可是每一个节点多了一个高度的信息。在每次插入之后都要更新树的每一个节点的高度。发现不平衡之后就要进行旋转。
单旋转
单旋转是碰到左左或者右右的情况下所使用的方法。
比如:
  3
    \
     2
       \
         1
这样的情况就须要旋转,由于3是根节点,它的左子树高度为0,右子树高度为2。相差超过1了。所以要进行旋转。而这是右右的情况,所以是单旋转。
       2
      / \
     1   3
这样子旋转过后就能够了~
双旋转
双旋转也非常easy,但代码操作会略微麻烦一点:
  2
    \
     4
    /
   3
遇到这样的情况就是双旋转,由于3是在2 4之间的。
旋转过后:
  3
 / \
2   4
这样子就能够了。。
事实上非常多时候情况比这个复杂,可是本质都是这样子操作的。
实现代码:
//
// AVL.h
// AVL
//
// Created by Alps on 14-8-7.
// Copyright (c) 2014年 chen. All rights reserved.
// #ifndef AVL_AVL_h
#define AVL_AVL_h #define ElementType int struct TreeNode;
typedef TreeNode* AVL;
typedef TreeNode* Position; Position Find(ElementType key, AVL A);
Position FindMax(AVL A);
Position FindMin(AVL A); AVL Insert(ElementType key, AVL A);
AVL Delete(ElementType key, AVL A); struct TreeNode{
ElementType element;
AVL left;
AVL right;
int height;
}; #endif
上面的代码是AVL.h文件。
//
// main.cpp
// AVL
//
// Created by Alps on 14-8-7.
// Copyright (c) 2014年 chen. All rights reserved.
// #include <iostream>
#include "AVL.h" int Height(AVL A){//求节点高度
if (A == NULL) {
return -1;
}else{
return A->height;
}
}
int MAX(int a, int b){//返回两数中的大数
return a>b? a:b;
} AVL SingleRotateWithRight(AVL A){//右单旋转
AVL tmp = A->right;
A->right = tmp->left;
tmp->left = A;
A->height = MAX(Height(A->left), Height(A->right))+1;
tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
return tmp;
} AVL DoubleRotateWithRight(AVL A){//右双旋转
AVL tmp = A->right;
AVL tmp1 = tmp->left;
tmp->left = tmp1->right;
A->right = tmp1->left;
tmp1->right = tmp;
tmp1->left = A;
tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
A->height = MAX(Height(A->left), Height(A->right))+1;
tmp1->height = MAX(Height(tmp1->left), Height(tmp1->right))+1;
return tmp1;
} AVL SingleRotateWithLeft(AVL A){//左单旋转
AVL tmp = A->left;
A->left = tmp->right;
tmp->right = A;
A->height = MAX(Height(A->left), Height(A->right))+1;
tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
return tmp;
} AVL DoubleRotateWithLeft(AVL A){//左双旋转
AVL tmp = A->left;
AVL tmp1 = tmp->right;
tmp->right = tmp1->left;
A->left = tmp1->right;
tmp1->left = tmp;
tmp1->right = A;
tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
A->height = MAX(Height(A->left), Height(A->right))+1;
tmp1->height = MAX(Height(tmp1->left), Height(tmp1->right))+1;
return tmp1;
} AVL Insert(ElementType key, AVL A){//插入元素
if (A == NULL) {
A = (AVL)malloc(sizeof(struct TreeNode));
A->element = key;
A->height = 0;
A->right = NULL;
A->left = NULL;
// return A;
}else{
if (key > A->element) {//假设大于当前节点,向右子树插入
A->right = Insert(key, A->right);
if (Height(A->right) - Height(A->left) == 2) {
if (key > A->right->element) {//假设插入到节点的右子树的右方,右单旋转
A = SingleRotateWithRight(A);
}else{
A = DoubleRotateWithRight(A);//插入到当前节点右子树的左方,右双旋转
}
} }else
if (key < A->element) {
A->left = Insert(key, A->left);
if (Height(A->left) - Height(A->right) == 2) {
if (key < A->left->element) {//左单旋转
A = SingleRotateWithLeft(A);
}else{
A = DoubleRotateWithLeft(A);
}
}
}
} A->height = MAX(Height(A->left), Height(A->right))+1;
return A;
} Position FindMax(AVL A){//找到当前树的最大值
AVL tmp = A;
if (A == NULL) {
return NULL;
}else{
while (tmp->right != NULL) {
tmp = tmp->right;
}
}
return tmp;
} Position FindMin(AVL A){//找到当前树的最小值
AVL tmp = A;
if (A == NULL) {
return NULL;
}else{
while (tmp->left != NULL) {
tmp = tmp->left;
}
}
return tmp;
} Position Find(ElementType key,AVL A){//查找节点,返回节点指针
AVL tmp = A;
if (A == NULL) {
return NULL;
}else{
while (tmp != NULL && tmp->element != key) {
if (key > tmp->element) {
tmp = tmp->right;
}else{
tmp = tmp->left;
}
}
}
return tmp;
} AVL Delete(ElementType key, AVL A){//删除节点 if (A == NULL || Find(key, A) == NULL) {
return NULL;
}else{ if (key == A->element) {//假设找到了要删除的节点
AVL tmp;
if (A->left && A->right) {//假设要删除的节点有左右子树
tmp = FindMin(A->left);//用当前节点左子树的最小值替换
A->element = tmp->element;
A->left = Delete(A->element, A->left);//删掉左子树最小值节点
}else{
tmp = A;
if (A->left) {
A = A->left;//<span style="font-family: Arial, Helvetica, sans-serif;">假设仅仅存在左子树,直接返回它的左子树节点</span> }else{
if (A->right) {
A = A->right; //<span style="font-family: Arial, Helvetica, sans-serif;">假设仅仅存在右子树。直接返回它的右子树节点</span> }else{
A = NULL;//删除的是叶子节点,直接赋值为NULL
}
}
free(tmp);
tmp = NULL;
return A;//返回删除后的节点
}
}else{
if (key > A->element) {//假设大于,去右子树
A->right = Delete(key, A->right);
if (Height(A->left) - Height(A->right) == 2) {
if (A->left->right != NULL && (Height(A->left->right) > Height(A->left->left))) {//假设当前节点不平衡。且节点左孩子存在右孩子,双旋转
A = DoubleRotateWithLeft(A);
}else{
A = SingleRotateWithLeft(A);//否则单旋转
}
}
// A->height = MAX(Height(A->left), Height(A->right));
}else{
if (key < A->element) {
A->left = Delete(key, A->left);
if (Height(A->right) - Height(A->left) == 2) {
if (A->right->left != NULL && (Height(A->right->left) > Height(A->right->right))) {//
A = DoubleRotateWithRight(A);
}else{
A = SingleRotateWithRight(A);
}
}
// A->height = MAX(Height(A->left), Height(A->right));
}
}
}
}
A->height = MAX(Height(A->left), Height(A->right))+1;
return A;
} int main(int argc, const char * argv[])
{
AVL A = NULL;
A = Insert(3, A);
printf("%d %d\n",A->element,A->height);
A = Insert(2, A);
printf("%d %d\n",A->left->element,A->height);
A = Insert(1, A);
printf("%d %d\n",A->left->element,A->left->height);
A = Insert(4, A);
A = Insert(5, A);
printf("%d %d\n",A->right->element,A->right->height);
A = Insert(6, A);
printf("%d %d\n",A->element,A->height);
A = Insert(7, A);
A = Insert(16, A);
A = Insert(15, A);
printf("%d %d\n",A->right->element,A->right->height);
A = Insert(14, A);
printf("%d %d\n",A->right->element,A->right->height);
A = Delete(16, A);
printf("%d %d\n",A->right->element,A->right->height);
A = Delete(6, A);
A = Delete(5, A);
printf("%d %d\n",A->right->element,A->right->height);
return 0;
}
算法学习 - 平衡二叉查找树实现(AVL树)的更多相关文章
- 数据结构与算法16—平衡二叉(AVL)树
		
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在 ...
 - 深入浅出数据结构C语言版(12)——平衡二叉查找树之AVL树
		
在上一篇博文中我们提到了,如果对普通二叉查找树进行随机的插入.删除,很可能导致树的严重不平衡 所以这一次,我们就来介绍一种最老的.可以实现左右子树"平衡效果"的树(或者说算法),即 ...
 - 平衡二叉查找树(AVL)的理解与实现
		
AVL树的介绍 平衡二叉树,又称AVL(Adelson-Velskii和Landis)树,是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持,而且它必须保证树的深度是 O(log N).一棵AVL ...
 - 二叉查找树,AVL树,伸展树【CH4601普通平衡树】
		
最近数据结构刚好看到了伸展树,在想这个东西有什么应用,于是顺便学习一下. 二叉查找树(BST),对于树上的任意一个节点,节点的左子树上的关键字都小于这个节点的关键字,节点的右子树上的关键字都大于这个节 ...
 - 【Java】 大话数据结构(12) 查找算法(3) (平衡二叉树(AVL树))
		
本文根据<大话数据结构>一书及网络资料,实现了Java版的平衡二叉树(AVL树). 平衡二叉树介绍 在上篇博客中所实现的二叉排序树(二叉搜索树),其查找性能取决于二叉排序树的形状,当二叉排 ...
 - 常见基本数据结构——树,二叉树,二叉查找树,AVL树
		
常见数据结构——树 处理大量的数据时,链表的线性时间太慢了,不宜使用.在树的数据结构中,其大部分的运行时间平均为O(logN).并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界. 树的定 ...
 - 数据结构——二叉查找树、AVL树
		
二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父 ...
 - 算法二叉搜索树之AVL树
		
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡 ...
 - 数据结构-自平衡二叉查找树(AVL)详解
		
介绍: 在计算机科学中,AVL树是最先发明的自平衡二叉查找树. 在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树. 查找.插入和删除在平均和最坏情况下都是O(log n).增 ...
 
随机推荐
- java 多线程总结篇1之——基本概念
			
1.什么是线程 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1--n个线程.(进程是资源分配的最小单位) 线程:同一类线程共享代码和数据空间,每个线程 ...
 - 获取随机字符串的方法 GetRandomString
			
方法1:推荐方便. System.Hash 单元 Memo1.Lines.Add(THash.GetRandomString(50)); 方法二(自己写的): function TStrApi.Sui ...
 - (四)Jsoup 获取 DOM 元素属性值
			
第一节: Jsoup 获取 DOM 元素属性值 Jsoup获取DOM元素属性值 比如我们要获取博客的href属性值: 我们这时候就要用到Jsoup来获取属性的值 : 我们给下示例代码: package ...
 - Python SGMLParser 的1个BUG??
			
首先说一下,我用的是python 2.7,刚好在学Python,今天想去爬点图片当壁纸,但是当我用 SGMLParser 做 <img> 标签解析的时候,发现我想要的那部分根本没获取到,我 ...
 - Linux学习笔记之一及虚拟机的安装
			
学习Linux基础入门 学习实验楼Linux基础入门--学习笔记系列博客 第一节 Linux系统简介 Linux就是一个操作系统,操作系统在计算机系统中包括系统调用和内核两层.在简单了解了Linux的 ...
 - java解析Xml格式的字符串
			
最近在工作中,需要调别的接口,接口返回的是一个字符串,而且内容是xml格式的,结果在解析json的时候报错,最终修改了接口的返回方式,以Map返回, 才得以接收到这个xml的字符串,然后通过dom4j ...
 - 30 最小的k个数
			
输入n个整数,找出其最小的k个数,例如输入4,5,1,6,2,7,3,8,最小的4个数为1,2,3,4 解法一:快排思想,会改变原数组 O(n) 注意是vector<int>& ...
 - 多线程-TaskExecutor-使用Demo
			
BasicExecute.java package com.jef.executeTest; public abstract class BasicExecute extends Thread { @ ...
 - ExampleConfigurationSectionHandler
			
ExampleConfigurationSectionHandler.cs using System; using System.Collections.Generic; using System.C ...
 - gitlab-针对API,获取私有令牌
			
Gitlab有一个强大的API系统,几乎所有的功能都可以在web中执行,当然也可以通过API来执行,为了使用API,需要从Gitlab中获取私有token. 执行步骤: 1. 登陆Gitlab服务器 ...