enable_shared_from_this是一个模板类,定义于头文件<memory>,其原型为:

template< class T > class enable_shared_from_this;
       std::enable_shared_from_this 能让一个对象(假设其名为 t ,且已被一个 std::shared_ptr 对象 pt 管理)安全地生成其他额外的 std::shared_ptr 实例(假设名为 pt1, pt2, ... ) ,它们与 pt 共享对象 t 的所有权。
       若一个类 T 继承 std::enable_shared_from_this<T> ,则会为该类 T 提供成员函数: shared_from_this 。 当 T 类型对象 t 被一个为名为 pt 的 std::shared_ptr<T> 类对象管理时,调用 T::shared_from_this 成员函数,将会返回一个新的 std::shared_ptr<T> 对象,它与 pt 共享 t 的所有权。
一.使用场合

当类A被share_ptr管理,且在类A的成员函数里需要把当前类对象作为参数传给其他函数时,就需要传递一个指向自身的share_ptr。

1.为何不直接传递this指针

使用智能指针的初衷就是为了方便资源管理,如果在某些地方使用智能指针,某些地方使用原始指针,很容易破坏智能指针的语义,从而产生各种错误。

2.可以直接传递share_ptr<this>么?

答案是不能,因为这样会造成2个非共享的share_ptr指向同一个对象,未增加引用计数导对象被析构两次。例如:

#include <memory>
#include <iostream>

class Bad
{
public:
std::shared_ptr<Bad> getptr() {
return std::shared_ptr<Bad>(this);
}
~Bad() { std::cout << "Bad::~Bad() called" << std::endl; }
};

int main()
{
// 错误的示例,每个shared_ptr都认为自己是对象仅有的所有者
std::shared_ptr<Bad> bp1(new Bad());
std::shared_ptr<Bad> bp2 = bp1->getptr();
// 打印bp1和bp2的引用计数
std::cout << "bp1.use_count() = " << bp1.use_count() << std::endl;
std::cout << "bp2.use_count() = " << bp2.use_count() << std::endl;
} // Bad 对象将会被删除两次
输出结果如下:

当然,一个对象被删除两次会导致崩溃。

正确的实现如下:

#include <memory>
#include <iostream>

struct Good : std::enable_shared_from_this<Good> // 注意:继承
{
public:
std::shared_ptr<Good> getptr() {
return shared_from_this();
}
~Good() { std::cout << "Good::~Good() called" << std::endl; }
};

int main()
{
// 大括号用于限制作用域,这样智能指针就能在system("pause")之前析构
{
std::shared_ptr<Good> gp1(new Good());
std::shared_ptr<Good> gp2 = gp1->getptr();
// 打印gp1和gp2的引用计数
std::cout << "gp1.use_count() = " << gp1.use_count() << std::endl;
std::cout << "gp2.use_count() = " << gp2.use_count() << std::endl;
}
system("pause");
}
输出结果如下:

二.为何会出现这种使用场合

因为在异步调用中,存在一个保活机制,异步函数执行的时间点我们是无法确定的,然而异步函数可能会使用到异步调用之前就存在的变量。为了保证该变量在异步函数执期间一直有效,我们可以传递一个指向自身的share_ptr给异步函数,这样在异步函数执行期间share_ptr所管理的对象就不会析构,所使用的变量也会一直有效了(保活)。

C++智能指针 weak_ptr

  weak_ptr 是一种不控制对象生命周期的智能指针, 它指向一个 shared_ptr 管理的对象. 进行该对象的内存管理的是那个强引用的 shared_ptr. weak_ptr只是提供了对管理对象的一个访问手段. 
  weak_ptr 设计的目的是为配合 shared_ptr 而引入的一种智能指针来协助 shared_ptr 工作, 它只可以从一个 shared_ptr 或另一个 weak_ptr 对象构造, 它的构造和析构不会引起引用记数的增加或减少. 
  定义在 memory 文件中(非memory.h), 命名空间为 std.

  weak_ptr 使用:

std::shared_ptr<int> sp(new int(10));
std::weak_ptr<int> wp(sp);
wp = sp;
printf("%d\n", wp.use_count()); // 1
wp.reset();
printf("%d\n", wp); // 0

// 检查 weak_ptr 内部对象的合法性.
if (std::shared_ptr<int> sp = wp.lock())
{
}

成员函数

weak_ptr 没有重载*和->但可以使用 lock 获得一个可用的 shared_ptr 对象. 注意, weak_ptr 在使用前需要检查合法性.

expired 用于检测所管理的对象是否已经释放, 如果已经释放, 返回 true; 否则返回 false.
lock 用于获取所管理的对象的强引用(shared_ptr). 如果 expired 为 true, 返回一个空的 shared_ptr; 否则返回一个 shared_ptr, 其内部对象指向与 weak_ptr 相同.
use_count 返回与 shared_ptr 共享的对象的引用计数.
reset 将 weak_ptr 置空.
weak_ptr 支持拷贝或赋值, 但不会影响对应的 shared_ptr 内部对象的计数.

使用 weak_ptr 解决 shared_ptr 因循环引有不能释放资源的问题

使用 shared_ptr 时, shared_ptr 为强引用, 如果存在循环引用, 将导致内存泄露. 而 weak_ptr 为弱引用, 可以避免此问题, 其原理:
  对于弱引用来说, 当引用的对象活着的时候弱引用不一定存在. 仅仅是当它存在的时候的一个引用, 弱引用并不修改该对象的引用计数, 这意味这弱引用它并不对对象的内存进行管理.
  weak_ptr 在功能上类似于普通指针, 然而一个比较大的区别是, 弱引用能检测到所管理的对象是否已经被释放, 从而避免访问非法内存。
注意: 虽然通过弱引用指针可以有效的解除循环引用, 但这种方式必须在程序员能预见会出现循环引用的情况下才能使用, 也可以是说这个仅仅是一种编译期的解决方案, 如果程序在运行过程中出现了循环引用, 还是会造成内存泄漏.

例子

#include <iostream>
#include <boost/smart_ptr.hpp>
using namespace std;
using namespace boost; class BB;
class AA
{
public:
AA() { cout << "AA::AA() called" << endl; }
~AA() { cout << "AA::~AA() called" << endl; }
shared_ptr<BB> m_bb_ptr; //!
}; class BB
{
public:
BB() { cout << "BB::BB() called" << endl; }
~BB() { cout << "BB::~BB() called" << endl; }
shared_ptr<AA> m_aa_ptr; //!
}; int main()
{
shared_ptr<AA> ptr_a (new AA);
shared_ptr<BB> ptr_b ( new BB);
cout << "ptr_a use_count: " << ptr_a.use_count() << endl;
cout << "ptr_b use_count: " << ptr_b.use_count() << endl;
//下面两句导致了AA与BB的循环引用,结果就是AA和BB对象都不会析构
ptr_a->m_bb_ptr = ptr_b;
ptr_b->m_aa_ptr = ptr_a;
cout << "ptr_a use_count: " << ptr_a.use_count() << endl;
cout << "ptr_b use_count: " << ptr_b.use_count() << endl;
}

结果造成崩溃

可以看到由于AA和BB内部的shared_ptr各自保存了对方的一次引用,所以导致了ptr_a和ptr_b销毁的时候都认为内部保存的指针计数没有变成0,所以AA和BB的析构函数不会被调用。解决方法就是把一个shared_ptr替换成weak_ptr。

#include <iostream>
#include <boost/smart_ptr.hpp>
using namespace std;
using namespace boost; class BB;
class AA
{
public:
AA() { cout << "AA::AA() called" << endl; }
~AA() { cout << "AA::~AA() called" << endl; }
weak_ptr<BB> m_bb_ptr; //!
}; class BB
{
public:
BB() { cout << "BB::BB() called" << endl; }
~BB() { cout << "BB::~BB() called" << endl; }
shared_ptr<AA> m_aa_ptr; //!
}; int main()
{
shared_ptr<AA> ptr_a (new AA);
shared_ptr<BB> ptr_b ( new BB);
cout << "ptr_a use_count: " << ptr_a.use_count() << endl;
cout << "ptr_b use_count: " << ptr_b.use_count() << endl;
//下面两句导致了AA与BB的循环引用,结果就是AA和BB对象都不会析构
ptr_a->m_bb_ptr = ptr_b;
ptr_b->m_aa_ptr = ptr_a;
cout << "ptr_a use_count: " << ptr_a.use_count() << endl;
cout << "ptr_b use_count: " << ptr_b.use_count() << endl;
}

  

因此,如果代码比较复杂,我们在使用shared_ptr的时候其实很难知道是否会有循环引用,所以即使有weak_ptr来解决这个问题,我们也不太容易知道何时能用到,除非清楚非常清楚类之间的关系,所以,在我们编程的时候尽量使用一个指针控制生命周期(即使用shared_ptr),而多个指针控制访问(即使用weak_ptr)。

智能指针shared_ptr新特性shared_from_this及weak_ptr的更多相关文章

  1. C++智能指针的enable_shared_from_this和shared_from_this机制

    前言 之前学习muduo网络库的时候,看到作者陈硕用到了enable_shared_from_this和shared_from_this,一直对此概念是一个模糊的认识,隐约记着这个机制是在计数器智能指 ...

  2. c/c++ 智能指针 shared_ptr 使用

    智能指针 shared_ptr 使用 上一篇智能指针是啥玩意,介绍了什么是智能指针. 这一篇简单说说如何使用智能指针. 一,智能指针分3类:今天只唠唠shared_ptr shared_ptr uni ...

  3. C++智能指针shared_ptr

    shared_ptr 这里有一个你在标准库中找不到的—引用数智能指针.大部分人都应当有过使用智能指针的经历,并且已经有很多关于引用数的文章.最重要的一个细节是引用数是如何被执行的—插入,意思是说你将引 ...

  4. STL源码剖析-智能指针shared_ptr源码

    目录一. 引言二. 代码实现 2.1 模拟实现shared_ptr2.2 测试用例三. 潜在问题分析 你可能还需要了解模拟实现C++标准库中的auto_ptr一. 引言与auto_ptr大同小异,sh ...

  5. c/c++ 智能指针 shared_ptr 和 new结合使用

    智能指针 shared_ptr 和 new结合使用 用make_shared函数初始化shared_ptr是最推荐的,但有的时候还是需要用new关键字来初始化shared_ptr. 一,先来个表格,唠 ...

  6. 智能指针shared_ptr的用法

    为了解决C++内存泄漏的问题,C++11引入了智能指针(Smart Pointer). 智能指针的原理是,接受一个申请好的内存地址,构造一个保存在栈上的智能指针对象,当程序退出栈的作用域范围后,由于栈 ...

  7. 智能指针 shared_ptr 解析

    近期正在进行<Effective C++>的第二遍阅读,书里面多个条款涉及到了shared_ptr智能指针,介绍的太分散,学习起来麻烦.写篇blog整理一下. LinJM   @HQU s ...

  8. 标准库中的智能指针shared_ptr

    智能指针的出现是为了能够更加方便的解决动态内存的管理问题.注:曾经记得有本书上说可以通过vector来实现动态分配的内存的自动管理,但是经过试验,在gcc4.8.5下是不行的.这个是容易理解的,vec ...

  9. C++ 智能指针 shared_ptr 分析

    引文: C++对指针的管理提供了两种解决问题的思路: 1.不允许多个对象管理一个指针 2.允许多个对象管理一个指针,但仅当管理这个指针的最后一个对象析构时才调用delete ps:这两种思路的共同点就 ...

随机推荐

  1. IDEA 的 properties 文件的属性字段如何链接到调用的文件

    想要达到的效果: ctrl + 鼠标点击:弹出如下所有使用的文件 问题: 有些 IDEA 使用 ctrl + 鼠标点击不能看到使用的文件. 解决办法: ctrl + 鼠标点击,然后选择设置按钮 然后 ...

  2. python开发必备神器 Virtualenv及管理工具Virtualenvwrapper

    如果在一台机器上,想开发多个不同的项目,需要用到同一个包的不同版本,如果还在本地继续安装,在同一个目录下安装或者更新,其它的项目必须就无法运行了,怎么办呢? 解决方案:虚拟环境 虚拟环境可以搭建独立的 ...

  3. Hive Metastore 连接报错

    背景 项目中需要通过一些自定义的组件来操控hive的元数据,于是使用了remote方式来存储hive元数据,使用一个服务后台作为gateway,由它来控制hive元数据. 现象 在windows上连接 ...

  4. ThreeJS两个点作为起始坐标画一个立方体

    drawLineBox(new THREE.Vector3(100, 50, 0), new THREE.Vector3(200, 100, 100)); function drawLineBox(s ...

  5. AngularJs 第一个自定义指令编写

    公司在做一个OA系统, 包括移动端(从微信企业号进入OA系统),电脑端. 电脑端还是用的传统的easyui做界面,asp.net mvc作为服务端.这个技术已经很成熟了配合权限框架很快就能开发出来.但 ...

  6. CSS 小结笔记之背景

    背景相关属性主要有: background-color  背景颜色 background-image 背景图片 background-repeat 是否平铺 repeat (默认平铺) | repea ...

  7. PHP获取当前页面的URL地址

    本文出至:新太潮流网络博客 //获取域名或主机地址 blog.iinu.com.cn echo $_SERVER['HTTP_HOST']."<br>"; //获取网页 ...

  8. RedHat 安装YUM软件

    最近在虚拟机里搭建RedHat Enterprise Linux 6.0 X86_64位系统,在此机器上安装了Oracle11g数据库.其中在安装软件的时候,一般都是用的是RPM命令,但是有些软件包有 ...

  9. 通过windows powershell 修改 Office 365默认的 35MB 的邮件大小限制

    附件下载: 通过windows powershell 修改 Office 365默认的 35MB 的邮件大小限制

  10. 从本机构建Linux应用程序VHD映像

    下图描述了总体的虚拟机映像的VHD生成,上传以及发布到 Azure 镜像市场的全过程: 具体步骤如下: 在本地计算机(Windows平台)上安装Hyper-V,并安装您所需要的虚拟机操作系统 在此操作 ...