1003 Emergency (25)(25 point(s))
problem
1003 Emergency (25)(25 point(s))
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) - the number of cities (and the cities are numbered from 0 to N-1), M - the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output
For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.\ All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output
2 4
anwser
Dijkstra 解法
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define Max 511
int N, M, C1, C2;
int Rescue[Max], Map[Max][Max], Dis[Max], Pre[Max], W[Max], Diff[Max];
bool Vis[Max] = {false};
void Dijkstra(int s){
memset(Dis, INF, sizeof(Dis));
memset(W, 0, sizeof(W));
memset(Diff, 0, sizeof(Diff));
Dis[s] = 0;
W[s] = Rescue[s];
Diff[s] = 1;
for(int i = 0; i < N; i++) Pre[i] = i;
for(int i = 0; i < N; i++){
int u = 0, minn = INF;
for(int j = 0; j < N; j++){
if(!Vis[j] && Dis[j] < minn){
u = j;
minn = Dis[j];
}
}
if(u == C2 || minn == INF) return;
Vis[u] = true;
for(int v = 0; v < N; v++) {
if(!Vis[v]) {
if(Dis[u] + Map[u][v] < Dis[v]){
Dis[v] = Dis[u] + Map[u][v];
// Pre[v] = u;
// }
W[v] = W[u] + Rescue[v];
Diff[v] = Diff[u];
}else if (Dis[u] + Map[u][v] == Dis[v]){
Diff[v] += Diff[u];
if(W[u] + Rescue[v] > W[v]){
W[v] = W[u] + Rescue[v];
// Pre[v] = u;
}
}
}
}
}
}
int main(){
// freopen("test.txt", "r", stdin);
memset(Map, INF, sizeof(Map));
std::cin>>N>>M>>C1>>C2;
for(int i = 0; i < N; i++){
std::cin>>Rescue[i];
}
for(int i = 0; i < M; i++){
int c1, c2, L;
std::cin>>c1>>c2>>L;
Map[c1][c2] = Map[c2][c1] = L;
}
Dijkstra(C1);
std::cout<<Diff[C2]<<" "<<W[C2];
return 0;
}
/*
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
*/
DFS解法
#include<bits/stdc++.h>
#include<vector>
#define INF 0x3f3f3f3f
#define Max 511
int N, M, C1, C2;
int Rescue[Max], Map[Max][Max], Dis[Max], Pre[Max], W[Max], Diff[Max];
bool Vis[Max] = {false};
void Dijkstra(int s){
memset(Dis, INF, sizeof(Dis));
memset(W, 0, sizeof(W));
memset(Diff, 0, sizeof(Diff));
Dis[s] = 0;
W[s] = Rescue[s];
Diff[s] = 1;
for(int i = 0; i < N; i++) Pre[i] = i;
for(int i = 0; i < N; i++){
int u = 0, minn = INF;
for(int j = 0; j < N; j++){
if(!Vis[j] && Dis[j] < minn){
u = j;
minn = Dis[j];
}
}
if(u == C2 || minn == INF) return;
Vis[u] = true;
for(int v = 0; v < N; v++) {
if(!Vis[v]) {
if(Dis[u] + Map[u][v] < Dis[v]){
Dis[v] = Dis[u] + Map[u][v];
W[v] = W[u] + Rescue[v];
Diff[v] = Diff[u];
}else if (Dis[u] + Map[u][v] == Dis[v]){
Diff[v] += Diff[u];
if(W[u] + Rescue[v] > W[v]){
W[v] = W[u] + Rescue[v];
}
}
}
}
}
}
int minDis = INF, diff = 0, maxTeam = 0, vis[Max];
void DFS(int v, int dis, int team){
if(v == C2){
if(dis < minDis)
{
minDis = dis;
diff = 1;
maxTeam = team;
}else if(dis == minDis){
diff++;
if(team > maxTeam) maxTeam = team;
}
// std::cout<<team<<std::endl;
return ;
}
vis[v] = 1;
for(int i = 0; i < N; i++)
if(vis[i] == 0 && Map[v][i] != INF)
DFS(i, dis + Map[v][i], team + Rescue[i]);
vis[v] = 0;
}
int main(){
// freopen("test.txt", "r", stdin);
memset(Map, INF, sizeof(Map));
memset(vis, 0, sizeof(vis));
std::cin>>N>>M>>C1>>C2;
for(int i = 0; i < N; i++){
std::cin>>Rescue[i];
}
for(int i = 0; i < M; i++){
int c1, c2, L;
std::cin>>c1>>c2>>L;
Map[c1][c2] = Map[c2][c1] = L;
}
// Dijkstra(C1);
// std::cout<<Diff[C2]<<" "<<W[C2];
DFS(C1, 0, Rescue[C1]);
std::cout<<diff<<" "<<maxTeam;
return 0;
}
/*
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
*/
experience
- 注意审题,求的不是最短路,是最短路的不同路条数。
- 这个图不是单向图,是双向图。
- Dijkstra算法以及其变种需要熟悉。
单词复习 - scattered 分散的
1003 Emergency (25)(25 point(s))的更多相关文章
- MySQL5.7.25(解压版)Windows下详细的安装过程
大家好,我是浅墨竹染,以下是MySQL5.7.25(解压版)Windows下详细的安装过程 1.首先下载MySQL 推荐去官网上下载MySQL,如果不想找,那么下面就是: Windows32位地址:点 ...
- PAT 甲级 1006 Sign In and Sign Out (25)(25 分)
1006 Sign In and Sign Out (25)(25 分) At the beginning of every day, the first person who signs in th ...
- 【PAT】1020 Tree Traversals (25)(25 分)
1020 Tree Traversals (25)(25 分) Suppose that all the keys in a binary tree are distinct positive int ...
- 【PAT】1052 Linked List Sorting (25)(25 分)
1052 Linked List Sorting (25)(25 分) A linked list consists of a series of structures, which are not ...
- 【PAT】1060 Are They Equal (25)(25 分)
1060 Are They Equal (25)(25 分) If a machine can save only 3 significant digits, the float numbers 12 ...
- 【PAT】1032 Sharing (25)(25 分)
1032 Sharing (25)(25 分) To store English words, one method is to use linked lists and store a word l ...
- 【PAT】1015 德才论 (25)(25 分)
1015 德才论 (25)(25 分) 宋代史学家司马光在<资治通鉴>中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得 ...
- 1002 A+B for Polynomials (25)(25 point(s))
problem 1002 A+B for Polynomials (25)(25 point(s)) This time, you are supposed to find A+B where A a ...
- PAT 甲级 1010 Radix (25)(25 分)进制匹配(听说要用二分,历经坎坷,终于AC)
1010 Radix (25)(25 分) Given a pair of positive integers, for example, 6 and 110, can this equation 6 ...
随机推荐
- 【专题】计数问题(排列组合,容斥原理,Prufer序列)
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...
- c++程序设计中的函数重载
函数重载的意思是在一个作用域内(命名空间内)定义了某个或某些具有相同名称的函数,但是他们的参数列表和定义(实现)不相同,如果相同的话,就没啥意义了.当调用一个重载函数时,编译器会通过所使用的参数类型. ...
- C# TreeView 自定义显示checkbox
本项目需要对TreeView进行定制,要求比较简单,主要要求如下: Winform中TreeView控件默认只支持所有级别的CheckBox显示或者不显示,不能控制制定Level的树节点显示 效果如下 ...
- 双击CAD对象,显示自定义对话框实现方法
class TlsApplication : IExtensionApplication { void IExtensionApplication.Initialize() { TTest.Start ...
- connect by和strart with子句
--使用connect by和strart with子句 SELECT [level],column,expression, ... FROM table [WHERE where_clause] [ ...
- os._exit(), sys.exit(), exit()
1. sys.exit(n) 退出程序引发SystemExit异常, 可以捕获异常执行些清理工作. n默认值为0, 表示正常退出. 其他都是非正常退出. 还可以sys.exit("sorry ...
- SQLAlchemy-对象关系教程ORM-一对多(外键),一对一,多对多
一:一对多 表示一对多的关系时,在子表类中通过 foreign key (外键)引用父表类,然后,在父表类中通过 relationship() 方法来引用子表的类. 在一对多的关系中建立双向的关系,这 ...
- js权威指南---学习笔记01
1.当函数赋值给对象的属性时,就变为了方法:2.被零整除不报错,只会返回无穷大(Infinity)或者负无穷大.例外:零除以零等于非数字(NaN).3.NaN与任何值都不相等! 4.Javascrip ...
- Codeforces 777E - Hanoi Factory(贪心+栈)
题目链接:http://codeforces.com/problemset/problem/777/E 题意:有n个环给你内环半径.外环半径和高度,叠这些环还要满足以下要求: ①:下面的环的外径要&g ...
- AT994 【11の倍数】
超短AC代码压行小技巧 #include<iostream> using namespace std; string s; ]; int main() { cin>>s; in ...