my team solve the problem in the contest with similar idea
this is a more deep analysis
The main idea is that if some comparator can be defined so that,
if the pieces are previously sorted, always exist some optimal solution
that can be formed following this order,
then doing basic dp we arrive at the solution
The same notation:
pre = minimum prefix sum
len = length of bracken
sum = sum ( = +1 and ) = -1
Note that we can ignore the couples of open-closed parentheses(without change the len property) for one more clear view, this do not change any thing, then exist three types of pieces
 
1 - Open Type
    (())(( --------> is ((
    ((()( ---------> is (((
    pre >= 0
2 - Closed-Open Type
    ()))()( -------> is ))(
    ))))(())())(()(---> is )))))((
    pre < 0 && pre != sum
3 - Closed Type
    )))())---------> is )))))
    ()()()())))----> is )))
    pre < 0 && pre == sum
The Closed-Open Type has two subtypes:
2.1 - Incremental Closed-Open ( more open parentheses that closed parentheses )
      ))()())(((( -----> is )))((((
      )()(((((((( -----> is )((((((((
      pre < 0 && pre != sum && sum >= 0
2.2 - Decremental Closed-Open ( more closed parentheses that open parentheses )
      ))()())(( -----> is )))((
      ))()( -----> is ))(
      pre < 0 && pre != sum && sum < 0
Any correct sequence of pieces can be reorder in this way:
first --------> open pieces ( in any order )
next  --------> incremental-closed-open pieces ( in decreasing order of pre )
next  --------> decremental-closed-open pieces ( NOT exist any correct comparator )
and finally --> closed pieces ( in any order ) 
and the sequence remains correct
But the issue is that NOT exist any correct comparator for decremental-closed-open pieces, many teams, my team included, accepted this problem with wrong criteries for compare decremental-closed-open pieces,
for example:
- decreasing order of pre (My solution)
- decreasing order of par(pre - sum , sum)
Both criteries has WRONG SOLUTION to this case:
4
(((((
))))(
)))))((((
)
The correct idea is that if we have a good way of compare open and incremental-closed-open pieces, then we can divide the problem in two parts:
1 - for each possible value v, what is the maximum lentgh of any sequence formed using only open and incremental-closed-open pieces, with exactly v open parentheses without couple, this problem can be solved sorting open and incremental-closed-open pieces and doing dp
2 - for each possible value v, what is the maximum lentgh of any sequence formed using only decremental-closed-open and closed pieces, with exactly v closed parentheses without couple, this problem is similar to 1 if the pieces are reverted and the parentheses are changed '('-->')' and ')'-->'('.
Now the solution for original problem would be
Max( dp[v] + dp2[v] ) for all possible value v
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
template <class T, class C>
using heap = priority_queue<T, vector<T>, C>;
void abc(string s, int &a, int &b, int &c)
{
a = ,
b = ,
c = s.length();
for (int i = ; i < s.length(); i++)
{
switch (s[i])
{
case '(':
a++;
break;
case ')':
if (a > )
{
a--;
}
else
{
b++;
}
}
}
}
struct triple
{
int a,
b,
c;
};
bool operator>(const triple &A, const triple &B)
{
if (A.b ^ B.b)
{
return A.b > B.b;
}
if (A.a ^ B.a)
{
return A.a < B.a;
}
return A.c < B.c;
}
bool operator<(const triple &A, const triple &B)
{
if (A.a ^ B.a)
{
return A.a > B.a;
}
if (A.b ^ B.b)
{
return A.b < B.b;
}
return A.c < B.c;
}
int main()
{
int n{};
cin >> n;
int A[], B[];
memset(A, 0xf0, sizeof(A));
memset(B, 0xf0, sizeof(B));
A[] = ;
B[] = ;
heap<triple, greater<triple>> I;
heap<triple, less<triple>> D;
for (int i = ; i <= n; i++)
{
string s;
cin >> s;
int a{}, b{}, c{};
abc(s, a, b, c);
if (a >= b)
{
I.push({a, b, c});
}
else
{
D.push({a, b, c});
}
}
while (I.size())
{
const int a = I.top().a,
b = I.top().b,
c = I.top().c;
for (int x = ; x >= max(b, a - b); x--)
{
A[x] = max(A[x], A[x - a + b] + c);
}
I.pop();
}
while (D.size())
{
const int a = D.top().a,
b = D.top().b,
c = D.top().c;
for (int x = ; x >= max(a, b - a); x--)
{
B[x] = max(B[x], B[x - b + a] + c);
}
D.pop();
}
int reponse{};
for (int x = ; x <= ; x++)
{
reponse = max(reponse, A[x] + B[x]);
}
cout << reponse << endl;
return ;
}

2017 NAIPC A:Pieces of Parentheses的更多相关文章

  1. North American Invitational Programming Contest (NAIPC) 2017

    (待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...

  2. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  3. XVII Open Cup named after E.V. Pankratiev. Grand Prix of America (NAIPC-2017)

    A. Pieces of Parentheses 将括号串排序,先处理会使左括号数增加的串,这里面先处理减少的值少的串:再处理会使左括号数减少的串,这里面先处理差值较大的串.确定顺序之后就可以DP了. ...

  4. 干货云集 WOT 2017全球架构与运维技术峰会揭密技术难点

    WOT,World Of Tech专注互联网IT技术领域,是一场不容错过的技术盛会!WOT 2017全球架构与运维技术峰会三大章节,15大技术专场,60+国内外一线互联网精英大咖站台,打造兼顾技术视野 ...

  5. python 错误之SyntaxError: Missing parentheses in call to 'print'

    SyntaxError: Missing parentheses in call to 'print' 由于python的版本差异,造成的错误. python2: print "hello ...

  6. SyntaxError: Missing parentheses in call to 'print'

    C:\Users\konglb>python Python 3.6.3 (v3.6.3:2c5fed8, Oct  3 2017, 17:26:49) [MSC v.1900 32 bit (I ...

  7. 【PYTHON】 Missing parentheses in call to 'print'

    Microsoft Windows [版本 10.0.15063] (c) 2017 Microsoft Corporation.保留所有权利. C:\Users\Jam>python Pyth ...

  8. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  9. 2017 Multi-University Training 2 解题报告

    Is Derek lying? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

随机推荐

  1. maven仓库的作用以及仓库的分类

    maven的工作需要从仓库下载一些jar包,如下图所示,本地的项目A.项目B等都会通过maven软件从远程仓库(可以理解为互联网上的仓库)下载jar包并存在本地仓库,本地仓库 就是本地文件夹,当第二次 ...

  2. Spring框架的事务管理之编程式的事务管理(了解)

    1. 说明:Spring为了简化事务管理的代码:提供了模板类 TransactionTemplate,所以手动编程的方式来管理事务,只需要使用该模板类即可!!2.手动编程方式的具体步骤如下: 1.步骤 ...

  3. jps 命令详解

    jps 命令详解 jps 是 jdk 提供的一个查看当前 java 进程的小工具, 可以看做是 JavaVirtual Machine Process Status Tool 的缩写.非常简单实用. ...

  4. connect strings sql server

    https://www.connectionstrings.com/sql-server/ Server=myServerAddress[,port];Database=myDataBase;User ...

  5. ftp sftp vsftp

    ftp  sftp (secure)  是文件传输 协议 vsftp(very secure) 是 ftp 服务端 sftp 是 ssh 的一部分

  6. qrc转换成py

  7. 2018.10.23 NOIP模拟 行星通道计划(bit)

    传送门 卡常题. 成功卡掉了作死写树套树的zxy. 然而对我的二维bit无能为力. 直接维护两棵bit. bit1[i][j]bit1[i][j]bit1[i][j]表示左端点小于等于iii,右端点小 ...

  8. composer 安装扩展失败的决绝方法

    https://getyii.com/topic/32

  9. 第六章 副词(Les adverbes )

    副词属于不变词类,无性.数变化(tout除外),它的功能是修饰动词.形容词.副词或句子. ➡副词的构成 ⇨单一副词 bien tard hier mal vite tôt très souvent  ...

  10. IntelliJ IDEA 2017版 spring-boot基础补充,原理详解

    一.Spring发展史  1.Spring1.x       版本一时代主要是通过XML文件配置bean,在java和xml中不断切换,在学习java web 初期的时候经常使用  2.Spring2 ...