my team solve the problem in the contest with similar idea
this is a more deep analysis
The main idea is that if some comparator can be defined so that,
if the pieces are previously sorted, always exist some optimal solution
that can be formed following this order,
then doing basic dp we arrive at the solution
The same notation:
pre = minimum prefix sum
len = length of bracken
sum = sum ( = +1 and ) = -1
Note that we can ignore the couples of open-closed parentheses(without change the len property) for one more clear view, this do not change any thing, then exist three types of pieces
 
1 - Open Type
    (())(( --------> is ((
    ((()( ---------> is (((
    pre >= 0
2 - Closed-Open Type
    ()))()( -------> is ))(
    ))))(())())(()(---> is )))))((
    pre < 0 && pre != sum
3 - Closed Type
    )))())---------> is )))))
    ()()()())))----> is )))
    pre < 0 && pre == sum
The Closed-Open Type has two subtypes:
2.1 - Incremental Closed-Open ( more open parentheses that closed parentheses )
      ))()())(((( -----> is )))((((
      )()(((((((( -----> is )((((((((
      pre < 0 && pre != sum && sum >= 0
2.2 - Decremental Closed-Open ( more closed parentheses that open parentheses )
      ))()())(( -----> is )))((
      ))()( -----> is ))(
      pre < 0 && pre != sum && sum < 0
Any correct sequence of pieces can be reorder in this way:
first --------> open pieces ( in any order )
next  --------> incremental-closed-open pieces ( in decreasing order of pre )
next  --------> decremental-closed-open pieces ( NOT exist any correct comparator )
and finally --> closed pieces ( in any order ) 
and the sequence remains correct
But the issue is that NOT exist any correct comparator for decremental-closed-open pieces, many teams, my team included, accepted this problem with wrong criteries for compare decremental-closed-open pieces,
for example:
- decreasing order of pre (My solution)
- decreasing order of par(pre - sum , sum)
Both criteries has WRONG SOLUTION to this case:
4
(((((
))))(
)))))((((
)
The correct idea is that if we have a good way of compare open and incremental-closed-open pieces, then we can divide the problem in two parts:
1 - for each possible value v, what is the maximum lentgh of any sequence formed using only open and incremental-closed-open pieces, with exactly v open parentheses without couple, this problem can be solved sorting open and incremental-closed-open pieces and doing dp
2 - for each possible value v, what is the maximum lentgh of any sequence formed using only decremental-closed-open and closed pieces, with exactly v closed parentheses without couple, this problem is similar to 1 if the pieces are reverted and the parentheses are changed '('-->')' and ')'-->'('.
Now the solution for original problem would be
Max( dp[v] + dp2[v] ) for all possible value v
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
template <class T, class C>
using heap = priority_queue<T, vector<T>, C>;
void abc(string s, int &a, int &b, int &c)
{
a = ,
b = ,
c = s.length();
for (int i = ; i < s.length(); i++)
{
switch (s[i])
{
case '(':
a++;
break;
case ')':
if (a > )
{
a--;
}
else
{
b++;
}
}
}
}
struct triple
{
int a,
b,
c;
};
bool operator>(const triple &A, const triple &B)
{
if (A.b ^ B.b)
{
return A.b > B.b;
}
if (A.a ^ B.a)
{
return A.a < B.a;
}
return A.c < B.c;
}
bool operator<(const triple &A, const triple &B)
{
if (A.a ^ B.a)
{
return A.a > B.a;
}
if (A.b ^ B.b)
{
return A.b < B.b;
}
return A.c < B.c;
}
int main()
{
int n{};
cin >> n;
int A[], B[];
memset(A, 0xf0, sizeof(A));
memset(B, 0xf0, sizeof(B));
A[] = ;
B[] = ;
heap<triple, greater<triple>> I;
heap<triple, less<triple>> D;
for (int i = ; i <= n; i++)
{
string s;
cin >> s;
int a{}, b{}, c{};
abc(s, a, b, c);
if (a >= b)
{
I.push({a, b, c});
}
else
{
D.push({a, b, c});
}
}
while (I.size())
{
const int a = I.top().a,
b = I.top().b,
c = I.top().c;
for (int x = ; x >= max(b, a - b); x--)
{
A[x] = max(A[x], A[x - a + b] + c);
}
I.pop();
}
while (D.size())
{
const int a = D.top().a,
b = D.top().b,
c = D.top().c;
for (int x = ; x >= max(a, b - a); x--)
{
B[x] = max(B[x], B[x - b + a] + c);
}
D.pop();
}
int reponse{};
for (int x = ; x <= ; x++)
{
reponse = max(reponse, A[x] + B[x]);
}
cout << reponse << endl;
return ;
}

2017 NAIPC A:Pieces of Parentheses的更多相关文章

  1. North American Invitational Programming Contest (NAIPC) 2017

    (待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...

  2. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  3. XVII Open Cup named after E.V. Pankratiev. Grand Prix of America (NAIPC-2017)

    A. Pieces of Parentheses 将括号串排序,先处理会使左括号数增加的串,这里面先处理减少的值少的串:再处理会使左括号数减少的串,这里面先处理差值较大的串.确定顺序之后就可以DP了. ...

  4. 干货云集 WOT 2017全球架构与运维技术峰会揭密技术难点

    WOT,World Of Tech专注互联网IT技术领域,是一场不容错过的技术盛会!WOT 2017全球架构与运维技术峰会三大章节,15大技术专场,60+国内外一线互联网精英大咖站台,打造兼顾技术视野 ...

  5. python 错误之SyntaxError: Missing parentheses in call to 'print'

    SyntaxError: Missing parentheses in call to 'print' 由于python的版本差异,造成的错误. python2: print "hello ...

  6. SyntaxError: Missing parentheses in call to 'print'

    C:\Users\konglb>python Python 3.6.3 (v3.6.3:2c5fed8, Oct  3 2017, 17:26:49) [MSC v.1900 32 bit (I ...

  7. 【PYTHON】 Missing parentheses in call to 'print'

    Microsoft Windows [版本 10.0.15063] (c) 2017 Microsoft Corporation.保留所有权利. C:\Users\Jam>python Pyth ...

  8. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  9. 2017 Multi-University Training 2 解题报告

    Is Derek lying? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

随机推荐

  1. 无法更新 EntitySet 因为它有一个 DefiningQuery

    DbFirst 使用 MVC+EF+仓储+ADO.NET实体数据模型 无法更新 EntitySet“Book”,因为它有一个 DefiningQuery definingqueryentityfram ...

  2. 用递归方法求 n!

    #include <iostream> using namespace std; #define LL long long LL fac(int n) { LL f; || n == ) ...

  3. geoserver 的缓存技术

    geoserver提到的缓存工具共有两个:tilecache和geowebcache.geowebcache是java写的,整合进geoserer中. tilecache则是python写的一个小程序 ...

  4. Jmeter的一个jmx文件(备忘)

    <?xml version="1.0" encoding="UTF-8"?> <jmeterTestPlan version="1. ...

  5. at java.net.InetAddress.getLocalHost(InetAddress.java:1475)

    今天在centos 安装hadoop安装完成后执行wordcount的时候报如下错误: at java.net.InetAddress.getLocalHost(InetAddress.java:14 ...

  6. slice、substring、substr

    slice() 定义和用法 slice() 方法可从已有的数组中返回选定的元素. string.slice(start, end)提取一个字符串 string.substring(start, end ...

  7. Mac pro 安装IntelliJ IDEA 2017版

    1.官网下载这个版本https://www.jetbrains.com 2.点击下载即可 3.下载好后放入本地 4.启动mac终端进行破解 输入命令:sudo vim /private/etc/hos ...

  8. java中的实例化

    java中的new用于实例化一个对象 T1 a= new T1(); T2 b= new T1(); 区别: 问题1:不是实例化一个a,是实例化一个T1 T1 的一个 对象的引用 a 指向了堆空间里的 ...

  9. python按行读取并替换

      fp = open(''test2.txt','w') #打开你要写得文件test2.txt lines = open('test1.txt').readlines() #打开文件,读入每一行 f ...

  10. ILA用法

    Ila在使用过程中Capture mode可选, write_hw_ila_data 把从ILA中读出的数据写入文件中. Syntax write_hw_ila_data [-force] [-csv ...