hdoj2604 Queuing(矩阵快速幂)
此题如果直接利用递推关系,处理不好会超内存的。
首先找出递推关系式,先给出递推关系式:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 );可以先尝试推导一下,推不出来再看下面的解释。
PS.以前做过一个类似的递推关系的题。
考虑当L=n时的情况,有两种情况:
①.如果最后一个字符为m :此时,只要前面长度为n-1的串符合要求,则当前长度为n的串必然符合要求。
②.如果最后一个字符为f:此时,无法确定,因为可能存在不符合要求的串,继续分情况讨论
(1).最后倒数二个字符为f,仍然可能存在不符合要求的串,继续分情况讨论
1.倒数第三个字符为f,因为存在fff,所以该种情况必然不符合要求,舍去
2.倒数第三个字符为m,仍然有可能不符合要求,再分
a.最后第四个字符为f,存在fmf,所以该种情况必然不符合要求,舍去
b.最后第四个字符为m,只要前面长度为n-4的串符合要求,则当前长度为n的串必然也符合要求
(2).最后第二个字符为m,存在可能不符合要求的情况,分
1.最后第三个字符为f,存在fmf,此时必然不符合要求舍去
2.最后第三个字符为m,只要前面长度为n-3的串的情况符合要求,则当前长度为n的串必然符合要求。
所以讲符合要求的情况相加就得到:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 );
前面已经讲过如果只是用普通递归方法会超内存,所以这里要考虑优化。
怎么优化?先看下面的矩阵相乘的结果:

x矩阵是多少会得到后面的矩阵?我们只需考虑后面矩阵的第一行,因为其他元素为0.
第1行第1列的元素我们需要得到f ( n ),因为f(n)=f(n-1)+f(n-3)+f(n-4); 所以我们必须保留f(n-1),f(n-3),f(n-4) 所以与之相乘的数必须为1.
所以第1列元素可以确定,为1 0 1 1,注意,是第一列而不是第一行。
根据第一行第二列元素,我们可以确定x矩阵第二列元素:1 0 0 0.
根据第一行第三列元素,我们可以确定x矩阵第三列元素:0 1 0 0.
根据第一行第四列元素,我们可以确定x矩阵第四列元素:0 0 1 0.
所以x矩阵已经确定,所以我们可以得到下面的矩阵乘式:

所以,反复乘以x矩阵就可以得到想要的f(n);
所以可以先求出x矩阵的L-4(不是L)次方,到这就转化为了矩阵快速幂问题。然后在用 f(4) f(3) f(2) f(1) 乘以求次方后的矩阵的第一列元素 ,相加就得到f(n)=res[0][0]*f[4]+res[1][0]*f[3]+res[2][0]*f[2]+res[3[0]*f[1]。
#include<iostream>
#include<cstring>
#include<string>
#define maxn 5
using namespace std;
struct mat{
int a[maxn][maxn];
};
mat mat_mul(mat x,mat y,int Mod){
mat ans;
memset(ans.a,,sizeof(ans.a));
for (int i=;i<;i++)
for (int j=;j<;j++)
for (int k=;k<;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j];
ans.a[i][j]%=Mod;
}
return ans;
}
void mat_pow(mat &res,int k,int Mod){ //res的k次方
mat c=res;
k--;
while (k){
if (k&) res=mat_mul(res,c,Mod);
k>>=;
c=mat_mul(c,c,Mod);
}
}
int main(){
int l,m;
while (cin >> l >> m){
int f[]={};
f[]=;f[]=;f[]=;f[]=;
mat res;
memset(res.a,,sizeof(res.a));
res.a[][]=res.a[][]=res.a[][]=res.a[][]=res.a[][]=res.a[][]=;
if (l<=){
cout << f[l]%m << endl;
continue;
}
else mat_pow(res,l-,m);
int ans=;
for (int i=;i<;i++){
ans+=res.a[i][]*f[-i]%m;
}
cout << ans%m << endl;
}
}
hdoj2604 Queuing(矩阵快速幂)的更多相关文章
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- HDU2604:Queuing(矩阵快速幂+递推)
传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...
- hdu---(2604)Queuing(矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- [HDOJ2604]Queuing(递推,矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...
- 【递推+矩阵快速幂】【HDU2604】【Queuing】
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU - 2604 Queuing(递推式+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)
题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...
- hdu 2604 Queuing(矩阵快速幂乘法)
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- [hdu 2604] Queuing 递推 矩阵快速幂
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
随机推荐
- Ruby环境配置
一.rvm 1.简介 rvm是一个命令行工具,可以提供一个便捷的多版本ruby环境的管理和切换. 2.安装步骤 1.新建文件:rvm-installer.sh vi rvm-installer.sh ...
- CF 1023D Array Restoration - 线段树
题解 非常容易想到的线段树, 还可以用并查集来. 还有一位大神用了$O(n)$ 就过了Orz 要判断是否能染色出输入给出的序列,必须满足两个条件: 1. 序列中必须存在一个$q$ 2. 两个相同的数$ ...
- Codeforces 665A. Buses Between Cities 模拟
A. Buses Between Cities time limit per test: 1 second memory limit per test: 256 megabytes input: s ...
- 通过BeanShell获取UUID并将参数传递给Jmeter
有些HTTPS请求报文的报文体中包含由客户端生成的UUID,在用Jmeter做接口自动化测试的时候,因为越过了客户端,直接向服务器端发送报文,所以,需要在Jmeter中通过beanshell获取UUI ...
- 【附案例】UI交互设计不会做?设计大神带你开启动效灵感之路
随着网络技术的创新发展,如今UI交互设计应用越来越广泛,显然已经成为设计的主流及流行的必然趋势.UI界面交互设计中的动效包括移动,滑块,悬停效果,GIF动画等.UI界面交互设计为何越来越受到青睐?它有 ...
- sd卡不能格式化
可能是读卡器坏了,还真遇到过,花了一下午,各种尝试,最后发现只是读卡器坏了.
- 二进制搭建kubernetes多master集群【开篇、集群环境和功能介绍】
本文主要说明kubernetes集群使用组建的版本和功能介绍.. 一.组件版本 Kubernetes 1.12.3 Docker 18.06.1-ce Etcd 3.3.10 Flanneld 0.1 ...
- C++加速程序的全局执行函数
static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); C++的cin和cout在输入输出时,会先 ...
- 2018.10.23 NOIP训练 Leo的组合数问题(组合数学+莫队)
传送门 好题. 考察了莫队和组合数学两个知识板块. 首先需要推出单次已知n,mn,mn,m的答案的式子. 我们令f[i]f[i]f[i]表示当前最大值为第iii个数的方案数. 显然iii之后的数都是单 ...
- 2018.10.14 bzoj4571: [Scoi2016]美味(主席树)
传送门 自认为是一道思想很妙的题. 直接分析问题. 如果没有xxx的干扰直接上可持久化01trie01trie01trie走人. 但现在有了xxx这个偏移量. 相当于把整个01trie01trie01 ...