[洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色
题目背景
HAOI2018 Round2 第二题
题目描述
为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种.
然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度.
小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 \(1004535809\) 取模的结果是多少.
输入输出格式
输入格式:
从标准输入读入数据. 第一行三个整数 \(N, M, S\).
接下来一行 \(M + 1\) 个整数, 第 \(i\) 个数表示 \(W_{i-1}\) .
输出格式:
输出到标准输出中. 输出一个整数表示答案.
输入输出样例
输入样例#1:
8 8 3
3999 8477 9694 8454 3308 8961 3018 2255 4910
输出样例#1:
524070430
输入样例#2:
见 https://www.luogu.org/paste/rxrv9utg
输出样例#2:
231524284
说明
特殊性质: \(\forall 1 \le i \le m, W_i = 0\)
对于 \(100\%\) 的数据, 满足 \(0 \le W_i < 1004535809\)
题解: 设\(f[i]\)表示出现次数恰好等于\(S\)的颜色个数大于等于\(i\)的方案数,从\(m\)种颜色中选出\(i\)种颜色的方案是\(C_m^i\),将染色的序列看做一个有可重元素的排列,那么方案数就是$$f[i]=C_mi*\frac{n!}{(n-S*i)!(S!)i}(n-Si)^{m-i}$$
之所以是大于等于,是因为式子的最后面那部分还可能有出现次数恰好等于\(S\)的颜色.
设\(lim=min(\lfloor\frac{n}{s} \rfloor,m)\).
设\(ans[i]\)表示出现次数恰好等于\(S\)的颜色个数恰好等于\(i\)的方案数,根据容斥,有:$$ans[i]=\sum_{j=i}{lim}(-1){j-i}C_j^if[j]$$
将式子中的组合数拆开$$ans[i]i!=\sum_{j=i}{lim}*\frac{(-1){j-i}}{(j-i)!}\frac{f[j]}{j!}$$
可以发现这是一个卷积的形式,设\(A[i]=\frac{(-1)^{i}}{i!},B[i]=\frac{f[i]}{i}\),那么将\(A\)的系数翻转,再与\(B\)做多项式乘法就可以了.
最后在统计答案的时候要注意,因为将\(A\)的系数翻转了,所以求出来的结果相当于是\(C_{i+lim}=A^{'}_{lim+i-j}*B_j\),所以在统计出现\(i\)次的方案数时要将数组的下标加\(lim\).
#include<bits/stdc++.h>
using namespace std;
const int N = 1e7+5;
const int M = 3e5+5;
const int mod = 1004535809;
int n, m, s, lim, r[M], len = 0, f[M], ans = 0, w[N], a[N], cnt[N];
int pinv[N], inv[N], fac[N];
void init(int n){
pinv[0] = inv[0] = fac[0] = pinv[1] = inv[1] = fac[1] = 1;
for(int i = 2; i <= n; i++){
fac[i] = 1ll*fac[i-1]*i%mod;
inv[i] = 1ll*(mod-mod/i)*inv[mod%i]%mod;
pinv[i] = 1ll*pinv[i-1]*inv[i]%mod;
}
}
int C(int n, int m){ return 1ll*fac[n]*pinv[m]%mod*pinv[n-m]%mod; }
int qpow(int x, int n){
int res = 1;
for(; n; x = 1ll*x*x%mod, n >>= 1)
if(n & 1) res = 1ll*res*x%mod;
return res;
}
void NTT(int *A, int f){
for(int i = 0; i < n; i++) if(i < r[i]) swap(A[i], A[r[i]]);
for(int i = 1; i < n; i <<= 1){
int wi = qpow(3, (mod-1)/(i << 1)), x, y;
if(f == -1) wi = qpow(wi, mod-2);
for(int j = 0; j < n; j += (i << 1)){
for(int k = 0, w = 1; k < i; k++, w = 1ll*w*wi%mod){
x = A[j+k], y = 1ll*A[i+j+k]*w%mod;
A[j+k] = (x+y)%mod, A[i+j+k] = (x-y+mod)%mod;
}
}
}
if(f == -1){
int invn = qpow(n, mod-2);
for(int i = 0; i < n; i++) A[i] = 1ll*A[i]*invn%mod;
}
}
int main(){
ios::sync_with_stdio(false);
cin >> n >> m >> s, lim = min(m, n/s), init(max(n, m));
for(int i = 0; i <= m; i++) cin >> w[i];
for(int i = 0; i <= lim; i++)
cnt[i] = 1ll*fac[n]*qpow(pinv[s], i)%mod*pinv[n-s*i]%mod*C(m, i)%mod*qpow(m-i, n-s*i)%mod*fac[i]%mod;
for(int i = 0; i <= lim; i++) a[i] = (((lim-i)&1) ? (mod-pinv[lim-i]) : pinv[lim-i]);
for(n = 1; n < (lim+1 << 1); n <<= 1) len++;
for(int i = 0; i < n; i++) r[i] = (r[i>>1]>>1)|((i&1)<<len-1);
NTT(cnt, 1), NTT(a, 1);
for(int i = 0; i < n; i++) cnt[i] = 1ll*cnt[i]*a[i]%mod;
NTT(cnt, -1);
for(int i = 0; i <= lim; i++) (ans += 1ll*cnt[lim+i]*pinv[i]%mod*w[i]%mod) %= mod;
cout << ans << endl;
return 0;
}
[洛谷P4491] [HAOI2018]染色的更多相关文章
- Solution -「HAOI 2018」「洛谷 P4491」染色
\(\mathcal{Description}\) Link. 用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...
- 洛咕 P4491 [HAOI2018]染色
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...
- BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...
- P4491 [HAOI2018]染色
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...
- [洛谷P4492] [HAOI2018]苹果树
洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- 洛谷 P2486 [SDOI2011]染色/bzoj 2243: [SDOI2011]染色 解题报告
[SDOI2011]染色 题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同 ...
随机推荐
- Sprint--5.21
看到作业要求组长就召开小组成员开了一个简短的会议,会议内容大致是这样的: 1.再次明确任务:就是每一个人都要清楚知道自己扮演的角色应该做些什么,怎么去做: 2.组长定时更新博客,每一位小组成员也要写进 ...
- Teamwork(The fifth day of the team)
在前面几天的努力中,我们已经完成了一些自己的工作,还有的就是一些完善,因为在前段时间一直都在寻找和配置Eclipse+Android SDK,由于版本和一些网络的阻碍,总是不能如愿的很好完成,经过了一 ...
- 将url的参数解析为Json数据
代码如下: <!DOCTYPE> <html lang="en"> <head> </head> <body> < ...
- iOS- 本地文本容错搜索引擎2-->如何实现英文(英文首字母,汉语拼音)对中文的搜索?
1.前言 先闲说几句,最近北京的雾霾真是大,呛的我这攻城师都抗不住了.各位攻城师们一定要爱护好自己的身体!空气好时,少坐多动. 如果条件好的话,最好让你们BOSS搞个室内空气净化器.因为那几天一般 ...
- PAT 1054 求平均值
https://pintia.cn/problem-sets/994805260223102976/problems/994805272659214336 本题的基本要求非常简单:给定N个实数,计算它 ...
- IDEA2018 license
2018-06-01更新 更新了webstorm 3.2之后发现居然又不能用了,现用 http://idea.congm.in 可以激活 新增一个 http://idea.toocruel.net
- 关于vue项目管理项目的架构管理平台
关于vue项目管理项目的架构管理平台 https://panjiachen.github.io/vue-element-admin-site/#/zh-cn/faq 31.4k 次浏览 完整项目地址: ...
- windows多线程(二) 等待线程返回
多线程编程中,有时我们需要等待某一线程完成了特定的操作后再继续做其他事情,要实现这个目的,可以使用Windows API函数WaitForSingleObject,或者WaitForMultipleO ...
- java 每一个对象都是根据hashCode区别的 每次返回不同的内存地址
可以通过hashCode比较对象,hashCode如果重写的话 返回的内存地址是一样的 则不能创建对象
- nginx配置虚拟路径下载文件(.apk)
公司将安卓apk文件放到服务器上,实现用户点击链接并下载 nginx version 1.14.1 nginx配置修改 server { listen 80; server_name localhos ...