Even and Odd Functions
\subsection{Even and Odd Functions}
For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
calling the function \textbf{even}\index{even functions} or
\textbf{odd}\index{odd functions}.
An \textbf{even function} means $f(-x)=f(x)$.
An example of an even function is the function $f(x)=x^2$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^2$ is an \emph{even function}.}
\end{figure}
An \textbf{odd function} means $f(-x)=-f(x)$. An example of this is the
function $f(x)=x^3$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^3};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^3$ is an \emph{odd function}.}
\end{figure}
\subsection{Surjective, Injective, and Bijective Functions}
\index{one-to-one}
\index{injective}
If each $f(x)$ value produced by a function $f$ can only be obtained by one
unique $x$ value, then we say $f$ is \textbf{injective}, or
\textbf{one-to-one}.
$ f: D \to R $ is injective or one-to-one iff
\[
\forall{(x_1 \wedge x_2 \in D)}
\big[f(x_1)=f(x_2)
\to x_1=x_2\big].
\]
\begin{remark}
This also means that for injective functions,
$ x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
\end{remark}
\begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{one-to-one} because
there are two possible $x$-values that can produce each given
$y$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because every
given $y$-value is mapped from a unique $x$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure}
A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
line at most once.\index{horizontal line test}
\index{onto}
\index{surjective}
$f: D \to R $ is \textbf{surjective} or \textbf{onto} iff
\[\forall (y \in R) \exists (x \in D) \big[f(x)=y\big]. \]
\begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{surjective} because
the values $(-\infty, 0)$ are never reached in its range.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because all $y$ values from $-\infty, \infty)$ have corresponding $x$-values.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure}
\index{bijective}
A function $f:A \to B$ is \textbf{bijective} iff it is \emph{both injective and surjective}.
\begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure}
\subsection{Graphs} \index{graphs}
\index{graph}
If $f$ is a function with a domain $D$, then its \textbf{graph} is the set
\[ \Big\{ \big( x,f(x) \big) \Big | x \in D \Big\},\]
that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
\footnote{Here, the difference between the words \emph{graph} and \emph{plot} is sometimes confusing. Technically speaking, a \emph{graph} is the set defined explicitly here, while a function's \emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either \emph{graph} or \emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.}
If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
This height might be positive or negative, depending on the sign of $f(x)$.
We use this height relationship to plot functions.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x+2};
\end{axis}
\end{tikzpicture}
\caption{A plot of the function $f(x)=x+2$}
\end{center}
\end{figure}
Even and Odd Functions的更多相关文章
- 【JavaScript】Understanding callback functions in Javascript
Callback functions are extremely important in Javascript. They’re pretty much everywhere. Originally ...
- UNDERSTANDING CALLBACK FUNCTIONS IN JAVASCRIPT
转自: http://recurial.com/programming/understanding-callback-functions-in-javascript/ Callback functio ...
- 理解callback function in javascript
以下内容主要摘自[1,2] (1)In javascript, functions are first-class objects, which means functions can be used ...
- Legendre polynomials
In mathematics, Legendre functions are solutions to Legendre's differential equation: In particular, ...
- (转) Functions
Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...
- ES6 In Depth: Arrow functions
Arrows <script language="javascript"> <!-- document.bgColor = "brown"; ...
- SQL Fundamentals || Single-Row Functions || 数字函数number functions
SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ...
- How to create functions that can accept variable number of parameters such as Format
http://www.chami.com/tips/delphi/112696D.html Sometimes it's necessary to pass undefined number of [ ...
- Clausen Functions (and related series, functions, integrals)
Since the Clausen functions are intimately related to a number of other important special functions, ...
随机推荐
- python面试题(转)
下面的代码输出什么? list = ['a', 'b', 'c', 'd', 'e'] print list[10:] 上面的代码输出[],并且不会导致IndexError错误 跟你想的一样,当取列表 ...
- kubectl 获取信息
获取pod所在节点的ip kubectlget po tiller-deploy-8694f8fddc-c2rql -n kube-system -o jsonpath='{.status.hostI ...
- node连续查询两次数据库返回方式(文档未定)
function db(callback){ var mysql = require('mysql'); var connection = mysql.createConnection({ host ...
- fasta/fastq格式解读
1)知识简介--------------------------------------------------------1.1)测序质量值 首先在了解fastq,fasta之前,了解一下什么是质量 ...
- selenium -- 鼠标悬停
针对页面上的二级菜单,需要鼠标悬停才能进行操作. /** * Clicks (without releasing) in the middle of the given element. This i ...
- RecycleView实现侧滑删除item
对于列表空间的侧滑操作,网上有很多开源的空间可以使用,Google在它的新控件RecycleView中增加了侧滑的API,完全遵循Material Design设计规范,下面看看效果演示: 下面看看介 ...
- 表单input中disabled提交后得不到值的解决办
input 按钮的disabled属性,如果设置了,form表单提交后,后台接收不到input的value input的字段当为diabled时时无法获取数值得,所以最近不要用这个,我们可以用read ...
- java实现24点游戏代码
import java.util.Arrays;import java.util.Scanner; public class Test07 { public static void main(S ...
- mongo嗅探器mongosniff
mongo嗅探器 在更高版本被mongoreplay取代. 安装: 在Ubuntu直接apt-get install mongodb即包含有. 使用方法 直接--help查看使用方法,一般使用: mo ...
- mysql数据库的最基本的命令
#查看mysql有哪些数据库:show databases; 创建一个数据库名称为DataBaseName,字符编码为utf8支持中文create database DataBaseName char ...