Even and Odd Functions
\subsection{Even and Odd Functions}
For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
calling the function \textbf{even}\index{even functions} or
\textbf{odd}\index{odd functions}.
An \textbf{even function} means $f(-x)=f(x)$.
An example of an even function is the function $f(x)=x^2$.
  \begin{figure}[H]
    \begin{center}
      \begin{tikzpicture}
        \begin{axis}[
            ylabel={$f(x)=x^2$},
            axis x line=bottom,
            axis y line=center,
            tick align=outside,
            yticklabels={,,}
            xticklabels={,,}
            xtickmax=10,
          ]
          \addplot[smooth,red]{x^2};
        \end{axis}
      \end{tikzpicture}
    \end{center}
    \caption{$f(x)=x^2$ is an \emph{even function}.}
  \end{figure}
  An \textbf{odd function} means $f(-x)=-f(x)$. An example of this is the
  function $f(x)=x^3$.
  \begin{figure}[H]
    \begin{center}
      \begin{tikzpicture}
        \begin{axis}[
            ylabel={$f(x)=x^3$},
            axis x line=bottom,
            axis y line=center,
            tick align=outside,
            yticklabels={,,}
            xticklabels={,,}
            xtickmax=10,
          ]
          \addplot[smooth,red]{x^3};
        \end{axis}
      \end{tikzpicture}
    \end{center}
    \caption{$f(x)=x^3$ is an \emph{odd function}.}
  \end{figure}
\subsection{Surjective, Injective, and Bijective Functions}
  \index{one-to-one}
  \index{injective}
  If each $f(x)$ value produced by a function $f$ can only be obtained by one
  unique $x$ value, then we say $f$ is \textbf{injective}, or
  \textbf{one-to-one}.
  $ f: D \to R $ is injective or one-to-one iff
  \[
    \forall{(x_1 \wedge x_2 \in D)}
    \big[f(x_1)=f(x_2)
    \to x_1=x_2\big].
  \]
  \begin{remark}
    This also means that for injective functions,
    $ x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
  \end{remark}
\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not \emph{one-to-one} because
        there are two possible $x$-values that can produce each given
        $y$-value.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because every
        given $y$-value is mapped from a unique $x$-value.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}
  A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
  line at most once.\index{horizontal line test}
  \index{onto}
  \index{surjective}
  $f: D \to R $ is \textbf{surjective} or \textbf{onto} iff
    \[\forall (y \in R) \exists  (x \in D) \big[f(x)=y\big]. \]
\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not \emph{surjective} because
        the values $(-\infty, 0)$ are never reached in its range.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because all $y$ values from $-\infty, \infty)$ have corresponding $x$-values.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}
    \index{bijective}
    A function $f:A \to B$ is \textbf{bijective} iff it is \emph{both injective and surjective}.
\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not bijective.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                xlabel={$x$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is bijective.]
        {\
          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                xlabel={$x$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}
\subsection{Graphs} \index{graphs}
  \index{graph}
    If $f$ is a function with a domain $D$, then its \textbf{graph} is the set
    \[ \Big\{ \big( x,f(x) \big) \Big | x \in D \Big\},\]
    that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
\footnote{Here, the difference between the words \emph{graph} and \emph{plot} is sometimes confusing. Technically speaking, a \emph{graph} is the set defined explicitly here, while a function's \emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either \emph{graph} or \emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.}
If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
This height might be positive or negative, depending on the sign of $f(x)$.
We use this height relationship to plot functions.
\begin{figure}[H]
    \begin{center}
        \begin{tikzpicture}
          \begin{axis}[
              ylabel={$f(x)$},
              xlabel={$x$},
              axis x line=bottom,
              axis y line=center,
              tick align=outside,
              yticklabels={,,}
              xticklabels={,,}
              xtickmax=10,
            ]
            \addplot[smooth,red]{x+2};
          \end{axis}
        \end{tikzpicture}
      \caption{A plot of the function $f(x)=x+2$}
    \end{center}
  \end{figure}
Even and Odd Functions的更多相关文章
- 【JavaScript】Understanding callback functions in Javascript
		Callback functions are extremely important in Javascript. They’re pretty much everywhere. Originally ... 
- UNDERSTANDING CALLBACK FUNCTIONS IN JAVASCRIPT
		转自: http://recurial.com/programming/understanding-callback-functions-in-javascript/ Callback functio ... 
- 理解callback function in javascript
		以下内容主要摘自[1,2] (1)In javascript, functions are first-class objects, which means functions can be used ... 
- Legendre polynomials
		In mathematics, Legendre functions are solutions to Legendre's differential equation: In particular, ... 
- (转) Functions
		Functions Functions allow to structure programs in segments of code to perform individual tasks. In ... 
- ES6 In Depth: Arrow functions
		Arrows <script language="javascript"> <!-- document.bgColor = "brown"; ... 
- SQL Fundamentals || Single-Row Functions || 数字函数number functions
		SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ... 
- How to create functions that can accept variable number of parameters such as Format
		http://www.chami.com/tips/delphi/112696D.html Sometimes it's necessary to pass undefined number of [ ... 
- Clausen Functions (and related series, functions, integrals)
		Since the Clausen functions are intimately related to a number of other important special functions, ... 
随机推荐
- DBA 招聘
			数据库管理员(资深) 眼控科技 10-19万 72小时反馈 上海 6小时前 大专及以上 2年以上经验 普通话 25-35岁 绩效奖金 带薪年假 午餐补助 定期体检 年底双薪 五险一金 职位描述: 工作 ... 
- 深入浅出parallelStream
			援引:http://blog.csdn.net/u011001723/article/details/52794455 感谢作者的分享!感谢作者为JDK8的学习所做的努力. about Stream ... 
- thymeleaf 拼接字符串与变量
			参考https://www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html <span th:text="'The name o ... 
- swift中UITextView的使用
			https://blog.csdn.net/potato512/article/details/52692604 
- 每天学一点儿HTML5的新标签
			sections部分 (http://www.w3.org/TR/html5/sections.html) 标签:article article标签用来表示页面中一段完整的可以自我包含的片段,具有可重 ... 
- springmvc与struts2的不同
			1.springmv的入口是一个servlet,即前端控制器.而struts2入口是一个fliter过滤器. 2.springmvc是基于开发方法(一个url对应一个方法,通过注解的方式进行访问),请 ... 
- hreeJS加载Obj资源后如何实现内存释放?
			问题: 我利用ThreeJS做了一个在同一个场景下动态加载Obj的页面,具体功能是:点击按钮A:加载A模型,点击按钮B:加载B模型...现在的问题是,前面已经加载过的模型,无法实现释放,内存一直在累加 ... 
- beego启动找不到conf的原因
			beego配置文件路径如下: app.conf内容 httpaddr = "192.168.199.178" httpport = appname = SecProxy runmo ... 
- Luugu 3084 [USACO13OPEN]照片Photo
			很神仙的dp...假装自己看懂了,以后回来复习复习... 设$f_{i}$表示从$1$到$i$,且$i$这个点必放的最大数量. 一个区间有两个限制条件:至少放一个,至多放一个. 因为一个区间至多要放一 ... 
- 交互神器-最好用的Mac原型设计工具
			市场上有着大量的开发和设计工具支持在Mac上安装使用,今天给大家强烈推荐一款Mac上的原型设计工具-Mockplus,原型工具在产品开发设计中是必不可少的,无论是现在非常火的小程序设计,还是网页设计, ... 
