\subsection{Even and Odd Functions}

For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
calling the function \textbf{even}\index{even functions} or
\textbf{odd}\index{odd functions}. An \textbf{even function} means $f(-x)=f(x)$.
An example of an even function is the function $f(x)=x^2$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^2$ is an \emph{even function}.}
\end{figure}
An \textbf{odd function} means $f(-x)=-f(x)$. An example of this is the
function $f(x)=x^3$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^3};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^3$ is an \emph{odd function}.}
\end{figure}
\subsection{Surjective, Injective, and Bijective Functions} \index{one-to-one}
\index{injective}
If each $f(x)$ value produced by a function $f$ can only be obtained by one
unique $x$ value, then we say $f$ is \textbf{injective}, or
\textbf{one-to-one}. $ f: D \to R $ is injective or one-to-one iff
\[
\forall{(x_1 \wedge x_2 \in D)}
\big[f(x_1)=f(x_2)
\to x_1=x_2\big].
\]
\begin{remark}
This also means that for injective functions,
$ x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
\end{remark} \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{one-to-one} because
there are two possible $x$-values that can produce each given
$y$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because every
given $y$-value is mapped from a unique $x$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure}
A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
line at most once.\index{horizontal line test} \index{onto}
\index{surjective}
$f: D \to R $ is \textbf{surjective} or \textbf{onto} iff
\[\forall (y \in R) \exists (x \in D) \big[f(x)=y\big]. \] \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{surjective} because
the values $(-\infty, 0)$ are never reached in its range.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because all $y$ values from $-\infty, \infty)$ have corresponding $x$-values.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure} \index{bijective}
A function $f:A \to B$ is \textbf{bijective} iff it is \emph{both injective and surjective}. \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure} \subsection{Graphs} \index{graphs} \index{graph}
If $f$ is a function with a domain $D$, then its \textbf{graph} is the set
\[ \Big\{ \big( x,f(x) \big) \Big | x \in D \Big\},\]
that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
\footnote{Here, the difference between the words \emph{graph} and \emph{plot} is sometimes confusing. Technically speaking, a \emph{graph} is the set defined explicitly here, while a function's \emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either \emph{graph} or \emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.} If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
This height might be positive or negative, depending on the sign of $f(x)$.
We use this height relationship to plot functions.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x+2};
\end{axis}
\end{tikzpicture}
\caption{A plot of the function $f(x)=x+2$}
\end{center}
\end{figure}

Even and Odd Functions的更多相关文章

  1. 【JavaScript】Understanding callback functions in Javascript

    Callback functions are extremely important in Javascript. They’re pretty much everywhere. Originally ...

  2. UNDERSTANDING CALLBACK FUNCTIONS IN JAVASCRIPT

    转自: http://recurial.com/programming/understanding-callback-functions-in-javascript/ Callback functio ...

  3. 理解callback function in javascript

    以下内容主要摘自[1,2] (1)In javascript, functions are first-class objects, which means functions can be used ...

  4. Legendre polynomials

    In mathematics, Legendre functions are solutions to Legendre's differential equation: In particular, ...

  5. (转) Functions

    Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...

  6. ES6 In Depth: Arrow functions

    Arrows <script language="javascript"> <!-- document.bgColor = "brown"; ...

  7. SQL Fundamentals || Single-Row Functions || 数字函数number functions

    SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ...

  8. How to create functions that can accept variable number of parameters such as Format

    http://www.chami.com/tips/delphi/112696D.html Sometimes it's necessary to pass undefined number of [ ...

  9. Clausen Functions (and related series, functions, integrals)

    Since the Clausen functions are intimately related to a number of other important special functions, ...

随机推荐

  1. bed文件格式解读

    1)BED文件 BED 文件(Browser Extensible Data)格式是ucsc 的genome browser的一个格式 ,提供了一种灵活的方式来定义的数据行,以用来描述注释信息.BED ...

  2. 亲, 我们来再重申一遍"=="和"equals的区别

    今天经历的一个事情太丢脸了, 一个学弟向我请教问题, 是这样的: 一个字符串里面含有空格, 不允许使用.trim()和replace方法, 只用if和for将空格去掉, 题目很简单, 一开始我是这样写 ...

  3. 97. Interleaving String (String; DP)

    Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given:s1 = ...

  4. DAO层注入HibernateTemplate的两种方式

    -------------------------siwuxie095                                         DAO 层注入 HibernateTemplat ...

  5. leetcode 196. Delete Duplicate Emails

    # 慢,内连接delete p1 from Person p1, Person p2 where p1.Email=p2.Email and p1.Id>p2.Id delete from Pe ...

  6. day12:vcp考试

    Q221. An administrator is creating a new Platform Service Controller Password Policy with the follow ...

  7. nginx反向代理部署与演示(二)

    我们把LB01作为负载均衡器,WEB01和WEB02作为两台web服务器.   WEB01与WEB02虚拟主机配置如下:   我们修改nginx下的conf/nginx.conf文件,在http{}中 ...

  8. 基于TCP的套接字

    tcp服务端 1 ss = socket() #创建服务器套接字 2 ss.bind() #把地址绑定到套接字 3 ss.listen() #监听链接 4 inf_loop: #服务器无限循环 5 c ...

  9. Canvas游戏计算机图形教程

    TechbrooD   主站 WOW 登录   注册 0首页 1简介 1.1WWW 技术变迁和生态 1.2WWW 学习建议 1.3WWW 互联网基础知识 1.4WWW Web 1.5 WWW Web ...

  10. Scrum 项目3.0--软件工程

    1. 确保product backlog井然有序.(参考示例图1) (例图1) 2.把故事进一步拆分成任务.(参考示例图2) (例图2) 3. 形成Sprint backlog. Scrum mast ...