补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ

事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$。

接下来介绍一下这个技巧:

很显然一个不在原图中的边一定在补图中出现,如果我们考虑用朴素的$Bfs$求一个图中的连通块个数,对于当前的一个点$x$,枚举它连出去的边进行拓展即可。

如果是求补图中的,那对于当前队首的点$x$,可以枚举其他所有的点,看是否和这个点有连边,没有就拓展。

一个可以的优化就是,一个点在$Bfs$是不会被入队多次,我们可以把它删掉,这样可以优化原先朴素算法在拓展上$O(n)$枚举的复杂度。

至于为什么删掉不会造成问题,我们可以考虑它有可能存在的问题就是某一个点$x$在拓展的时候准备拓展一个已经被删除的点$y$,那可能会造成原本在一个连通块的点分成多个,这种情况下在之前$y$拓展的时候就会先拓展到$x$;至于如果两个点同时被删除时,那它们一定是同一个根,一定是同一个连通块里的。

接下来证明这样优化之后复杂度的上界是$O(n + m)$:

事实上我们进行每一次拓展的时候,一次失败的拓展是因为原图中存在着这条边,而一旦拓展成功,就能删掉一个点。由于每条边做多被访问一次,于是每次拓展就是要么是减少一条边,要么是减少一个点,故$Bfs$的复杂度上界是$O(n + m)$的。

这个题就是一个例子,在此做一个总结:

#include <cstdio>
#include <queue>
#include <algorithm> using namespace std; const int N = ; int n, m;
int fa[N], vis[N];
vector<int> g[N], ans; int Sk(int x) {
return fa[x] == x? x : fa[x] = Sk(fa[x]);
} void Bfs(int s) {
static queue<int> Q;
Q.push(s), fa[s] = Sk(s + );
ans.push_back();
for (int x; !Q.empty(); ) {
x = Q.front(), Q.pop();
for (int v : g[x]) vis[v] = x;
for (int i = Sk(); i <= n; i = Sk(i + )) {
if (vis[i] != x) fa[i] = Sk(i + ), Q.push(i), ++ans.back();
}
}
} int main() {
scanf("%d%d", &n, &m);
for (int i = , x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
g[x].push_back(y), g[y].push_back(x);
}
for (int i = ; i <= n; ++i) fa[i] = i;
fa[n + ] = n + ;
for (int i = ; i <= n; i = Sk(i + )) Bfs(i);
sort(ans.begin(), ans.end());
printf("%d\n", (int)ans.size());
for (int i : ans) printf("%d ", i);
putchar('\n'); return ;
}

【BZOJ 1098】办公楼(补图连通块个数,Bfs)的更多相关文章

  1. Codeforces 920E Connected Components? 补图连通块个数

    题目链接 题意 对给定的一张图,求其补图的联通块个数及大小. 思路 参考 ww140142. 维护一个链表,里面存放未归入到任何一个连通块中的点,即有必要从其开始进行拓展的点. 对于每个这样的点,从它 ...

  2. 求连通块个数 - BFS、DFS、并查集实现

    本文基于leetcode的200.岛屿数量(题目

  3. P1197 [JSOI2008]星球大战 [删边求连通块个数]

    展开 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的 ...

  4. ZOJ 1709 Oil Deposits(dfs,连通块个数)

    Oil Deposits Time Limit: 2 Seconds      Memory Limit: 65536 KB The GeoSurvComp geologic survey compa ...

  5. bzoj 1098 办公楼biu —— 链表+栈

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1098 首先,没有连边的人一定得在一个连通块里: 先把所有人连成一个链表,然后从第一个人开始, ...

  6. bzoj 1015 维护连通块个数,离线并查集

    水. /************************************************************** Problem: 1015 User: idy002 Langua ...

  7. DFS:POJ1562-Oil Deposits(求连通块个数)

    Oil Deposits Time Limit: 1000MS Memory Limit: 10000K Description The GeoSurvComp geologic survey com ...

  8. BZOJ 1098: [POI2007]办公楼biu 链表

    求补图连通块,用链表优化,势能O(n+m) #include<cstdio> #include<cstring> #include<iostream> #inclu ...

  9. hdu 1241 Oil Deposits(DFS求连通块)

    HDU 1241  Oil Deposits L -DFS Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & ...

随机推荐

  1. ats Linux Bridge内联

    Linux可以配置为在桥接模式下运行. 为网桥分配了两个或更多物理接口. 在接口之间共享单个IP地址. 默认情况下,任何到达一个接口的数据包都会立即路由到另一个网桥接口. 需要的Linux包: bri ...

  2. Kubernetes网络方案 Flannel和calico

    摘抄某博客 1.   Flannel Flannel是为kubernetes设计的一个非常简洁的多节点三层网络方案,解决不同host上的容器互联问题,原理是为每个host分配一个subnet,容器从此 ...

  3. 2019第十届蓝桥杯 E题 迷宫

    /*输入 30 50 01010101001011001001010110010110100100001000101010 00001000100000101010010000100000001001 ...

  4. 笔试题——C++后序字符比较

    题目:从两个数组的最后一个元素开始比较,输出数组中不同元素的个数.当一个数组的所有元素比较完成后,结束比较.a数组长度5,b数组长度3,a[ 4 ]和b[ 2 ]比较. 例: 输入: 77 21 1 ...

  5. 方正 ignb路由器设置备份(自用笔记)

    192.168.15.96255.255.255.0192.168.15.1219.232.46.61219.141.136.10

  6. linux命令系列 ls

    ls是linux中最常用的命令之一 ls 的功能是list directory contents,其常用的选项如下: (1) -l   use a long listing format(长格式,显示 ...

  7. PHP的垃圾回收

    PHP使用引用计数和写时拷贝(Copy-On-Write)来管理内存. 引用技术不言自明,写时拷贝工作原来如下: $worker = array("Fred", 35, " ...

  8. 王者荣耀交流协会final发布-第一次scrum立会

    1.例会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐 master:袁玥 2.时间跨度 2017年12月1日 17:00 — 17:31,总计31分钟 3.地点 一食堂二楼沙发座椅 ...

  9. 线程局部存储TLS(thread local storage)

    同一全局变量或者静态变量每个线程访问的是同一变量,多个线程同时访存同一全局变量或者静态变量时会导致冲突,尤其是多个线程同时需要修改这一变量时,通过TLS机制,为每一个使用该全局变量的线程都提供一个变量 ...

  10. android--实现通过点击链接打开apk(应用图标在桌面消失)

    首先在AndroidManifest.xml的MAIN Activity下追加以下内容.(启动Activity时给予) ※必须添加项 <intent-filter> <action ...