题目链接

BZOJ3834

题解

容易想到对于\(gcd(x,y) = D\),\(d\)的倍数一定存在于两个区间中

换言之

\[\lfloor \frac{a - 1}{D} \rfloor < \lfloor \frac{b}{D} \rfloor
\]

\[\lfloor \frac{c - 1}{D} \rfloor < \lfloor \frac{d}{D} \rfloor
\]

整除分块即可做到\(O(n\sqrt{max\{b\}})\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int main(){
register int T = read(),a,b,c,d,M,ans,A,B,C,D;
while (T--){
a = read() - 1; b = read(); c = read() - 1; d = read();
M = max(b,d); ans = 1;
for (register int i = 1,nxt; i <= M; i = nxt + 1){
nxt = INF;
A = a / i,B = b /i,C = c / i,D = d / i;
if (A) nxt = min(nxt,a / A);
if (B) nxt = min(nxt,b / B);
if (C) nxt = min(nxt,c / C);
if (D) nxt = min(nxt,d / D);
if (A < B && C < D) ans = nxt;
}
printf("%d\n",ans);
}
return 0;
}

BZOJ3834 [Poi2014]Solar Panels 【数论】的更多相关文章

  1. bzoj 3834 [Poi2014]Solar Panels 数论分块

    3834: [Poi2014]Solar Panels Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 367  Solved: 285[Submit] ...

  2. 【bzoj3834】[Poi2014]Solar Panels 数论

    题目描述 Having decided to invest in renewable energy, Byteasar started a solar panels factory. It appea ...

  3. BZOJ3834[Poi2014]Solar Panels——分块

    题目描述 Having decided to invest in renewable energy, Byteasar started a solar panels factory. It appea ...

  4. BZOJ3834 : [Poi2014]Solar Panels

    问题相当于找到一个最大的k满足在$[x_1,x_2]$,$[y_1,y_2]$中都有k的倍数 等价于$\frac{x_2}{k}>\frac{x_1-1}{k}$且$\frac{y_2}{k}& ...

  5. 【BZOJ3834】[Poi2014]Solar Panels 分块好题

    [BZOJ3834][Poi2014]Solar Panels Description Having decided to invest in renewable energy, Byteasar s ...

  6. [POI2014]Solar Panels

    题目大意: $T(T\le1000)$组询问,每次给出$A,B,C,D(A,B,C,D\le10^9)$,求满足$A\le x\le B,C\le y\le D$的最大的$\gcd(x,y)$. 思路 ...

  7. 【BZOJ】3834: [Poi2014]Solar Panels

    http://www.lydsy.com/JudgeOnline/problem.php?id=3834 题意:求$max\{(i,j)\}, smin<=i<=smax, wmin< ...

  8. BZOJ3834:Solar Panels (分块)

    题意 询问两个区间[smin,smax],[wmin,smax]中是否存在k的倍数,使得k最大 分析 将其转化成\([\frac{smin-1}k,\frac{smax}k],[\frac{wmin- ...

  9. BZOJ3833 : [Poi2014]Solar lamps

    首先旋转坐标系,将范围表示成矩形或者射线 如果范围是一条线,则将灯按y坐标排序,y坐标相同的按x坐标排序, 对于y相同的灯,f[i]=min(i,它前面灯发光时刻的第k[i]小值), 线段树维护,$O ...

随机推荐

  1. java查询几个菜单下的所有下级菜单

    需求: 假如有几个一级菜单,一级菜单下面有几个二级菜单,二级菜单下又还有三级菜单.现在要求一级菜单里面的几个设置为无效,将不显示在前端.现在需要的是查询出一级菜单下面所有的菜单,包括二级,三级菜单 原 ...

  2. 服务治理-> Spring Cloud Eureka

    服务治理->搭建服务注册中心 服务治理可以说是微服务架构中最为核心和基础的模块, 它主要用来实现各个微服务 实例的自动化注册与发现. 为什么我们在微服务架构中那么需要服务治理模块呢?微服务 系统 ...

  3. django-simple_tag、filter

    simple_tag与filter的用法 1.支持自定义函数处理方法 2.支持模板调用 创建步骤: a.在app目录下创建templatetags文件夹 b.在templatetags中创建任意名称. ...

  4. day22 模块-collections,time,random,pickle,shelve等

    一.引入模块的方式: 1. 认识模块 模块可以认为是一个py文件. 模块实际上是我们的py文件运行后的名称空间 导入模块: 1. 判断sys.modules中是否已经导入过该模块 2. 开辟一个内存 ...

  5. mongoose和mongodb的几篇文章 (ObjectId,ref)

    http://mongoosejs.com/docs/populate.html http://stackoverflow.com/questions/6578178/node-js-mongoose ...

  6. Tomcat安全管理规范

    s 前言 随着公司内部使用Tomcat作为web应用服务器的规模越来越大,为保证Tomcat的配置安全,防止信息泄露,恶性攻击以及配置的安全规范,特制定此Tomcat安全配置规范. 定位:仅对tomc ...

  7. 使用git-premit时的问题

    package.json 相关配置如下 { "scripts": { "lint": "eslint pages/* component/* --fi ...

  8. redis解决商品秒杀问题

    博主最近在项目中遇到了抢购问题!现在分享下.抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖" ...

  9. 预备作业02 : 体会做中学(Learning By Doing)

    1.你有什么技能比大多人(超过班级90%以上)更好? 我认为我是一个比较爱摄影和绘画的人,虽然说说不上技术精湛,但还是能拿出手的. 2.针对这个技能的获取你有什么成功的经验? 接触摄影和绘画都是因为喜 ...

  10. ResNet笔记

    参考: Deep Learning-TensorFlow (14) CNN卷积神经网络_深度残差网络 ResNet 先前的研究已经证明,拥有至少一个隐层的神经网络是一个通用的近似器,只要提高网络的深度 ...