Digits of Factorial LightOJ - 1045(数学题?)
原文地址: https://blog.csdn.net/fenghoumilin/article/details/52293910
题意:求 n 的阶乘在 base 进制下的位数,这里有一个简单的方法,就是log10(n)+ 1就是 n 的在十进制下的位数(想一下 为什么。。。),由此可知 log base(n)+ 1 就是n在base 进制下的位数,再根据换底公式,log base(n) == log(n)/ log(base),这里让求的是阶乘,根据log的原理呢,就有log base (n!) == ( log(n) + log(n-1) + log(n-2) + 。。。。+ log(1)) / log(base)。用 sum 数组存一下 log(n!) 就可以快速的求出了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = + , INF = 0x7fffffff;
double num[maxn]; //注意类型 int main()
{
num[] = ;
for(int i=; i<maxn; i++)
num[i] = num[i-] + log(1.0 * i);
int T, kase = ;
scanf("%d",&T);
while(T--)
{
int n, base;
scanf("%d%d",&n,&base);
int ans = num[n]/log(1.0 * base) + ;
printf("Case %d: %d\n", ++kase, ans);
} return ;
}
Digits of Factorial LightOJ - 1045(数学题?)的更多相关文章
- Digits of Factorial LightOJ - 1045
题目就不再发了,大致意思就是给你一个十进制数n,算出阶乘后转换成K进制的数,你来算一下它的位数. 坑点在哪呢,就是这个数可能算阶乘的时候没放弄了,比如1000000,做过最多单算阶乘的题也就是让你算到 ...
- light oj 1045 - Digits of Factorial K进制下N!的位数
1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...
- LightOJ 1245 数学题,找规律
1.LightOJ 1245 Harmonic Number (II) 数学题 2.总结:看了题解,很严谨,但又确实恶心的题 题意:求n/1+n/2+....+n/n,n<=2^31. ...
- LightOJ Beginners Problems 部分题解
相关代码请戳 https://coding.net/u/tiny656/p/LightOJ/git 1006 Hex-a-bonacci. 用数组模拟记录结果,注意取模 1008 Fibsieve's ...
- 专题[vjudge] - 数论0.1
专题[vjudge] - 数论0.1 web-address : https://cn.vjudge.net/contest/176171 A - Mathematically Hard 题意就是定义 ...
- LOJ N!在不同进制的位数
lightoj1045 - Digits of Factorial (N!不同进制的位数) 对于一个B进制的数,只需要对其取以B的对数就可以得到他在B进制情况下的位数(取了对数之后可能为小数,所以还需 ...
- Problem 34
Problem 34 https://projecteuler.net/problem=34 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 1 ...
- LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number
数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. N ...
- 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...
随机推荐
- [PLC]ST语言五:STL/RET/CMP/ZCP
一:STL/RET/CMP/ZCP 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*步进指令STL(EN,s);*) SET(M8002,S3); STL(T ...
- 使用Nmon_Analyzer excel 问题总结
使用wps打开nmon的分析文件,出现 运行时错误13类型不匹配 查看具体代码,是这句出现错误Start = DateValue(Sheet1.Range("date")),进一 ...
- 在WebGL场景中管理多个卡牌对象的实验
这篇文章讨论如何在基于Babylon.js的WebGL场景中,实现多个简单卡牌类对象的显示.选择.分组.排序,同时建立一套实用的3D场景代码框架.由于作者美工能力有限,所以示例场景视觉效果可能欠佳,本 ...
- 【LeetCode算法题库】Day3:Reverse Integer & String to Integer (atoi) & Palindrome Number
[Q7] 把数倒过来 Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Outpu ...
- easyui的tab标签链接aspx页面引发全局刷新的问题解决方案
通过tree组件和tabs组件结合加载子页面窗体aspx,点击按钮页面全部重新加载,或整个跳到子窗体页面,解决方案:换一种结合iframe的方式做系统界面:在tree组件出替换掉设置href属性处为下 ...
- printf命令详解
基础命令学习目录首页 本文是Linux Shell系列教程的第(八)篇,更多shell教程请看:Linux Shell系列教程 在上一篇:Linux Shell系列教程之(七)Shell输出这篇文章中 ...
- NodeJS http模块
Node.js提供了http模块,用于搭建HTTP服务端和客户端. 创建Web服务器 /** * node-http 服务端 */ let http = require('http'); let ur ...
- 从汉诺塔游戏理解python递归函数
汉诺塔游戏规则: 有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方 图 ...
- 数据库——SQL数据定义
数据定义 SQL的数据定义语句 操 作 对 象 操 作 方 式 创 建 删 除 修 改 表 CREATE TABLE DROP TABLE ALTER TABLE 视 图 CREATE ...
- 第二阶段Sprint冲刺会议1
进展:总结第一阶段冲刺成就,讨论第二阶段任务,要实现的主要功能,分工及任务认领.