原文地址: https://blog.csdn.net/fenghoumilin/article/details/52293910

题意:求 n 的阶乘在 base 进制下的位数,这里有一个简单的方法,就是log10(n)+ 1就是 n 的在十进制下的位数(想一下 为什么。。。),由此可知 log base(n)+ 1 就是n在base 进制下的位数,再根据换底公式,log base(n) == log(n)/ log(base),这里让求的是阶乘,根据log的原理呢,就有log base (n!) == ( log(n) + log(n-1) + log(n-2) + 。。。。+ log(1)) / log(base)。用 sum 数组存一下 log(n!) 就可以快速的求出了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = + , INF = 0x7fffffff;
double num[maxn]; //注意类型 int main()
{
num[] = ;
for(int i=; i<maxn; i++)
num[i] = num[i-] + log(1.0 * i);
int T, kase = ;
scanf("%d",&T);
while(T--)
{
int n, base;
scanf("%d%d",&n,&base);
int ans = num[n]/log(1.0 * base) + ;
printf("Case %d: %d\n", ++kase, ans);
} return ;
}

Digits of Factorial LightOJ - 1045(数学题?)的更多相关文章

  1. Digits of Factorial LightOJ - 1045

    题目就不再发了,大致意思就是给你一个十进制数n,算出阶乘后转换成K进制的数,你来算一下它的位数. 坑点在哪呢,就是这个数可能算阶乘的时候没放弄了,比如1000000,做过最多单算阶乘的题也就是让你算到 ...

  2. light oj 1045 - Digits of Factorial K进制下N!的位数

    1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...

  3. LightOJ 1245 数学题,找规律

    1.LightOJ 1245   Harmonic Number (II)   数学题 2.总结:看了题解,很严谨,但又确实恶心的题 题意:求n/1+n/2+....+n/n,n<=2^31. ...

  4. LightOJ Beginners Problems 部分题解

    相关代码请戳 https://coding.net/u/tiny656/p/LightOJ/git 1006 Hex-a-bonacci. 用数组模拟记录结果,注意取模 1008 Fibsieve's ...

  5. 专题[vjudge] - 数论0.1

    专题[vjudge] - 数论0.1 web-address : https://cn.vjudge.net/contest/176171 A - Mathematically Hard 题意就是定义 ...

  6. LOJ N!在不同进制的位数

    lightoj1045 - Digits of Factorial (N!不同进制的位数) 对于一个B进制的数,只需要对其取以B的对数就可以得到他在B进制情况下的位数(取了对数之后可能为小数,所以还需 ...

  7. Problem 34

    Problem 34 https://projecteuler.net/problem=34 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 1 ...

  8. LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number

    数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. N ...

  9. 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

随机推荐

  1. TPO-21 C2 Which elective courses to take

    /* 加粗:语音部分 * 红色:单词部分 * 斜体:语法部分 * 下划线:信号词/句 */ 第 1 段 1.Listen to a conversation between a student and ...

  2. Unity2018 Shader Graph 实验室

    Unity2018 Shader Graph 实验室 Shader Shader Graph Unity  Tips: -- 在shader forge和amplyfy Shader节点图形化shad ...

  3. java多线程相关代码

    1.创建线程的三种方式 使用Thread package com.wpbxx.test; //1.自定义一个类,继承java.lang包下的Thread类 class MyThread extends ...

  4. 如何布局您的PC站和移动站,并表达两者之间内容的对应关系

      如何布局您的PC站和移动站,并表达两者之间内容的对应关系 目前较流量的PC站与移动站配置方式有三种,百度站在搜索引擎角度将这三种分别称为跳转适配.代码适配和自适应,以下为这三种配置方式的名词解释及 ...

  5. 从零开始的Python学习Episode 22——多线程

    多线程 线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...

  6. Visionpro介绍和下载安装视频教程

    ------------------------Halcon,Visionpro高清视频教程,点击下载视频--------------------------

  7. SmartRaiden 和 Lighting Network 进行去中心化跨链原子资产交换

    作者介绍 虫洞社区·签约作者 steven bai 前言 如果能够进行以太坊和比特币跨链原子资产交换,是不是一件很酷的事情? 目前链下的扩容方式有很多,最广为人知的就是比特币的闪电网络和以太坊的雷电网 ...

  8. 黑客攻防web安全实战详解笔记

    如有不足,欢迎指出,谢谢! ----------------------------------------- 1,url传值 GET传值:其传递的值会附加到url上  POST传值:其传递的值不会加 ...

  9. python常用模块目录

    博客目录总纲首页 python其他知识目录 random  hashlib  os  sys  json __name__ shutil  xlrd  xlwt   xlutils 核心模块:os s ...

  10. 关于如何使用dubbo管理控制台的一些感想

    1.起因 ​因java项目需要准备安装一个dubbo-admin管理后台研究使用,无奈github上并没有看到dubbo-admin的目录着实让人着急.百度引擎上一些文章也不靠谱!真是浪费时间!所以又 ...