3165: [Heoi2013]Segment

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 465  Solved: 187
[Submit][Status][Discuss]

Description

要求在平面直角坐标系下维护两个操作: 
1.在平面上加入一条线段。记第i条被插入的线段的标号为i。 
2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号。

Input

第一行一个整数n,表示共n 个操作。 
接下来n行,每行第一个数为0或1。 
 
若该数为 0,则后面跟着一个正整数 k,表示询问与直线  
x = ((k +lastans–1)%39989+1)相交的线段中交点(包括在端点相交的情形)最靠上的线段的编号,其中%表示取余。若某条线段为直线的一部分,则视作直线与线段交于该线段y坐标最大处。若有多条线段符合要求,输出编号最小的线段的编号。 
若该数为 1,则后面跟着四个正整数 x0, y0, x 1, y 1,表示插入一条两个端点为 
((x0+lastans-1)%39989+1,(y0+lastans-1)%10^9+1)和((x
1+lastans-1)%39989+1,(y1+lastans-1)%10^9+1) 的线段。 
其中lastans为上一次询问的答案。初始时lastans=0。

Output

对于每个 0操作,输出一行,包含一个正整数,表示交点最靠上的线段的编号。若不存在与直线相交的线段,答案为0。

Sample Input

6
1 8 5 10 8
1 6 7 2 6
0 2
0 9
1 4 7 6 7
0 5

Sample Output

2
0 3

HINT

对于100%的数据,1 ≤ n ≤ 10^5 , 1 ≤  k, x0, x1 ≤ 39989, 1 ≤ y0 ≤ y1 ≤ 10^9。

Source

 

[Submit][Status][Discuss]

HOME Back

线段树维护线段,23333

 #include <bits/stdc++.h>

 struct line
{
int lt, rt;
double k, b; line(void) {}; line(int x0, int y0, int x1, int y1)
{
if (x0 < x1)
lt = x0, rt = x1;
else
lt = x1, rt = x0; if (x0 == x1)
{
k = 0.0;
b = y0 > y1 ? y0 : y1;
}
else
{
k = 1.0 * (y0 - y1) / (x0 - x1);
b = y0 - x0 * k;
}
} inline double f(int x)
{
return k * x + b;
}
}ln[]; int tot; int sg(double x)
{
static const double eps = 1e-; return (x > -eps) - (x < +eps);
} int cross(int i, int j)
{
return floor((ln[i].b - ln[j].b) / (ln[j].k - ln[i].k));
} int flg[]; int wi[]; double wy[]; inline void update(int x, int p)
{
double y = ln[p].f(x); int s = sg(y - wy[x]); if (!wi[x] || s > || (!s && p < wi[x]))
wi[x] = p, wy[x] = y;
} void insert(int t, int l, int r, int p)
{
if (ln[p].lt <= l && ln[p].rt >= r)
{
if (!flg[t])flg[t] = p;
else
{
int mid = (l + r) >> ; bool lu = sg(ln[p].f(l) - ln[flg[t]].f(l)) > ;
bool ru = sg(ln[p].f(r) - ln[flg[t]].f(r)) > ; if (lu && ru)flg[t] = p;
else if (lu || ru)
{
int tt = cross(p, flg[t]);
if (tt <= mid)
{
if (lu)
insert(t << , l, mid, p);
else
insert(t << , l, mid, flg[t]), flg[t] = p;
}
else
{
if (ru)
insert(t << | , mid + , r, p);
else
insert(t << | , mid + , r, flg[t]), flg[t] = p;
}
}
else
{
update(l, p);
update(r, p);
}
}
}
else
{
int mid = (l + r) >> ; if (ln[p].lt <= mid)
insert(t << , l, mid, p);
if (ln[p].rt > mid)
insert(t << | , mid + , r, p);
}
} int ansi; double ansy; void query(int t, int l, int r, int x)
{
if (flg[t])
{
double y = ln[flg[t]].f(x); int s = sg(y - ansy); if (s > || (!s && flg[t] < ansi))
ansi = flg[t], ansy = y;
} if (l != r)
{
int mid = (l + r) >> ; if (x <= mid)
query(t << , l, mid, x);
if (x > mid)
query(t << | , mid + , r, x);
}
} signed main(void)
{
int n; scanf("%d", &n); for (int ans = ; n--; )
{
int op; scanf("%d", &op); if (op) // insert segment
{
int x0, y0, x1, y1; scanf("%d%d%d%d", &x0, &y0, &x1, &y1); x0 = (x0 + ans - ) % + ;
x1 = (x1 + ans - ) % + ;
y0 = (y0 + ans - ) % + ;
y1 = (y1 + ans - ) % + ; ln[++tot] = line(x0, y0, x1, y1); insert(, , , tot);
}
else // query segment
{
int x; scanf("%d", &x); x = (x + ans - ) % + ; ansi = wi[x], ansy = wy[x]; query(, , , x); printf("%d\n", ans = ansi);
}
}
}

@Author: YouSiki

BZOJ 3165: [Heoi2013]Segment的更多相关文章

  1. bzoj 3165: [Heoi2013]Segment 动态凸壳

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 202  Solved: 89[Submit][Stat ...

  2. Bzoj 3165 [Heoi2013]Segment题解

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 668  Solved: 276[Submit][Sta ...

  3. BZOJ.3165.[HEOI2013]Segment(李超线段树)

    BZOJ 洛谷 对于线段,依旧是存斜率即可. 表示精度误差一点都不需要管啊/托腮 就我一个人看成了mod(10^9+1)吗.. //4248kb 892ms #include <cstdio&g ...

  4. bzoj 3165: [Heoi2013]Segment 线段树

    题目: Description 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第i条被插入的线段的标号为i. 给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. ...

  5. 【BZOJ3165】[HEOI2013]Segment(李超线段树)

    [BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...

  6. 洛谷 P4097 [HEOI2013]Segment 解题报告

    P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...

  7. 【BZOJ 3165】 [Heoi2013]Segment 李超线段树

    所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...

  8. 【BZOJ 3165】【HEOI 2013】Segment

    往区间上覆盖一次函数,做法是用线段树维护标记永久化. 每次都忘了线段树要4倍空间,第一次交总是RE,再这么手残的话考场上就真的要犯逗了. #include<cstdio> #include ...

  9. BZOJ 3165 Segment

    同上题. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm&g ...

随机推荐

  1. jmeter功能按钮介绍

    Jmeter本来是做性能测试的,所以有很多监听器都是针对性能的,随后边的不断发展,可以应用到接口自动化等测试工作上. 面板的文件菜单中一般都是打开.保存.新建测试的,如下图: 保存时可以直接ctrl+ ...

  2. java基础---类加载和对象创建过程

    类中可以存在的成员: class A{ 静态成员变量: 非静态成员变量: 静态函数: 非静态函数: 构造函数 A(..){...} 静态代码块 static{...} 构造代码块 {...} } 类加 ...

  3. Datawhale MySQL 训练营 Task1:MySQL 安装与数据库基础

    安装 平台 Windows X64; MySQL: 直接去 MySQL 官网 下载:点击即可安装:安装过程中可能会要求 python3.7; 可以去安装一个 python3.7; 可视化工具:Navi ...

  4. PLSQL触发器,游标

    --触发器 drop table emp_log create table emp_log( empno number, log_date date, new_salary number, actio ...

  5. 学习python,第五篇

    Python中%r和%s的详解及区别 %r用rper()方法处理对象%s用str()方法处理对象 有些情况下,两者处理的结果是一样的,比如说处理int型对象. 例一: print "I am ...

  6. day23 正则,re模块

    一. 简谈正则表达式 元字符 . 除了换行符外任意字符. \w 数字.字母.下划线 \s 空白符 \b 单词的末尾 \d 数字 \n 匹配换行符 \t 匹配制表符 \W 除了数字. 字母 下划线 \D ...

  7. Codeforces70 | Codeforces Beta Round #64 | 瞎讲报告

    目录 前言 正文 A B C D E 前言 这个毒瘤的517 放了Div1 然后D题是昨天讲的动态凸包(啊喂!我还没来的及去写 结果自己想的是二分凸包 (当然没有写出来 写完前两题之后就愉快地弃疗 C ...

  8. js备忘录1

    新建对象 赋值和取值操作 var book={ topic:"JavaScript", fat: true }; book.topic  通过点访问 book["fat& ...

  9. No.1_NABCD模型分析

        Reminder 之 NABCD模型分析           定位 多平台的闹钟提醒软件. 在安卓市场发布软件,发布后一周的用户量为1000.           N (Need 需求) 这个 ...

  10. iOS开发学习-给圆形图片添加边框

    imageView.layer.cornerRadius = imageView.bounds.size.width * 0.5;// 设置圆角刚好是自身宽度的一半,就刚好是圆形 imageView. ...