3165: [Heoi2013]Segment

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 465  Solved: 187
[Submit][Status][Discuss]

Description

要求在平面直角坐标系下维护两个操作: 
1.在平面上加入一条线段。记第i条被插入的线段的标号为i。 
2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号。

Input

第一行一个整数n,表示共n 个操作。 
接下来n行,每行第一个数为0或1。 
 
若该数为 0,则后面跟着一个正整数 k,表示询问与直线  
x = ((k +lastans–1)%39989+1)相交的线段中交点(包括在端点相交的情形)最靠上的线段的编号,其中%表示取余。若某条线段为直线的一部分,则视作直线与线段交于该线段y坐标最大处。若有多条线段符合要求,输出编号最小的线段的编号。 
若该数为 1,则后面跟着四个正整数 x0, y0, x 1, y 1,表示插入一条两个端点为 
((x0+lastans-1)%39989+1,(y0+lastans-1)%10^9+1)和((x
1+lastans-1)%39989+1,(y1+lastans-1)%10^9+1) 的线段。 
其中lastans为上一次询问的答案。初始时lastans=0。

Output

对于每个 0操作,输出一行,包含一个正整数,表示交点最靠上的线段的编号。若不存在与直线相交的线段,答案为0。

Sample Input

6
1 8 5 10 8
1 6 7 2 6
0 2
0 9
1 4 7 6 7
0 5

Sample Output

2
0 3

HINT

对于100%的数据,1 ≤ n ≤ 10^5 , 1 ≤  k, x0, x1 ≤ 39989, 1 ≤ y0 ≤ y1 ≤ 10^9。

Source

 

[Submit][Status][Discuss]

HOME Back

线段树维护线段,23333

 #include <bits/stdc++.h>

 struct line
{
int lt, rt;
double k, b; line(void) {}; line(int x0, int y0, int x1, int y1)
{
if (x0 < x1)
lt = x0, rt = x1;
else
lt = x1, rt = x0; if (x0 == x1)
{
k = 0.0;
b = y0 > y1 ? y0 : y1;
}
else
{
k = 1.0 * (y0 - y1) / (x0 - x1);
b = y0 - x0 * k;
}
} inline double f(int x)
{
return k * x + b;
}
}ln[]; int tot; int sg(double x)
{
static const double eps = 1e-; return (x > -eps) - (x < +eps);
} int cross(int i, int j)
{
return floor((ln[i].b - ln[j].b) / (ln[j].k - ln[i].k));
} int flg[]; int wi[]; double wy[]; inline void update(int x, int p)
{
double y = ln[p].f(x); int s = sg(y - wy[x]); if (!wi[x] || s > || (!s && p < wi[x]))
wi[x] = p, wy[x] = y;
} void insert(int t, int l, int r, int p)
{
if (ln[p].lt <= l && ln[p].rt >= r)
{
if (!flg[t])flg[t] = p;
else
{
int mid = (l + r) >> ; bool lu = sg(ln[p].f(l) - ln[flg[t]].f(l)) > ;
bool ru = sg(ln[p].f(r) - ln[flg[t]].f(r)) > ; if (lu && ru)flg[t] = p;
else if (lu || ru)
{
int tt = cross(p, flg[t]);
if (tt <= mid)
{
if (lu)
insert(t << , l, mid, p);
else
insert(t << , l, mid, flg[t]), flg[t] = p;
}
else
{
if (ru)
insert(t << | , mid + , r, p);
else
insert(t << | , mid + , r, flg[t]), flg[t] = p;
}
}
else
{
update(l, p);
update(r, p);
}
}
}
else
{
int mid = (l + r) >> ; if (ln[p].lt <= mid)
insert(t << , l, mid, p);
if (ln[p].rt > mid)
insert(t << | , mid + , r, p);
}
} int ansi; double ansy; void query(int t, int l, int r, int x)
{
if (flg[t])
{
double y = ln[flg[t]].f(x); int s = sg(y - ansy); if (s > || (!s && flg[t] < ansi))
ansi = flg[t], ansy = y;
} if (l != r)
{
int mid = (l + r) >> ; if (x <= mid)
query(t << , l, mid, x);
if (x > mid)
query(t << | , mid + , r, x);
}
} signed main(void)
{
int n; scanf("%d", &n); for (int ans = ; n--; )
{
int op; scanf("%d", &op); if (op) // insert segment
{
int x0, y0, x1, y1; scanf("%d%d%d%d", &x0, &y0, &x1, &y1); x0 = (x0 + ans - ) % + ;
x1 = (x1 + ans - ) % + ;
y0 = (y0 + ans - ) % + ;
y1 = (y1 + ans - ) % + ; ln[++tot] = line(x0, y0, x1, y1); insert(, , , tot);
}
else // query segment
{
int x; scanf("%d", &x); x = (x + ans - ) % + ; ansi = wi[x], ansy = wy[x]; query(, , , x); printf("%d\n", ans = ansi);
}
}
}

@Author: YouSiki

BZOJ 3165: [Heoi2013]Segment的更多相关文章

  1. bzoj 3165: [Heoi2013]Segment 动态凸壳

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 202  Solved: 89[Submit][Stat ...

  2. Bzoj 3165 [Heoi2013]Segment题解

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 668  Solved: 276[Submit][Sta ...

  3. BZOJ.3165.[HEOI2013]Segment(李超线段树)

    BZOJ 洛谷 对于线段,依旧是存斜率即可. 表示精度误差一点都不需要管啊/托腮 就我一个人看成了mod(10^9+1)吗.. //4248kb 892ms #include <cstdio&g ...

  4. bzoj 3165: [Heoi2013]Segment 线段树

    题目: Description 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第i条被插入的线段的标号为i. 给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. ...

  5. 【BZOJ3165】[HEOI2013]Segment(李超线段树)

    [BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...

  6. 洛谷 P4097 [HEOI2013]Segment 解题报告

    P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...

  7. 【BZOJ 3165】 [Heoi2013]Segment 李超线段树

    所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...

  8. 【BZOJ 3165】【HEOI 2013】Segment

    往区间上覆盖一次函数,做法是用线段树维护标记永久化. 每次都忘了线段树要4倍空间,第一次交总是RE,再这么手残的话考场上就真的要犯逗了. #include<cstdio> #include ...

  9. BZOJ 3165 Segment

    同上题. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm&g ...

随机推荐

  1. git pull fatal: refusing to merge unrelated histories

    1.首先我github有个远程仓库,然后我本地有个仓库 本地仓库我新添加了一个文件,然后我去关联(git remote add origin git@github.com:qshilary/gitte ...

  2. while循环计算规则:内循环—外循环!

    num= 1 #值 =1while num <= 10 : # num(1)小于10 print(num) # 应该打印 这个1的值 num +=1 # num+=1等价于 num再加1 所以这 ...

  3. C++ chrono 库中的 steady_clock 和 system_clock

    C++11 中提供了一个计时的标准库 <chrono>; 里面有三种时钟 clock: steady_clock, system_clock 和 high_resolution_clock ...

  4. IDEA2017.3.4破解方式及lombok图文配置详解

    下载jetbrainsCrack-2.7-release-str.jar包 下载地址: https://files.cnblogs.com/files/xifenglou/JetBrains.zip ...

  5. 互评beta版本 - hello word!【空天猎】

    基于NABCD评论作品 1.Need需求:市面上同类型的手机及PC端飞行射击类游戏有很多,所以从需求方面来说,这款游戏的潜在客户非常有局限性.近些年较火的飞行射击类游戏,例如腾讯14年发行的<全 ...

  6. No.100_第一次团队会议

    任务的确立 这次会议,我们的主要目标是确定任务: 我们的任务有以下几个选择: 学霸网站,这个项目拥有以前的前端代码,我们再使用Django后端服务.上手难度较低,环境较好. 多平台时间管理软件. 安卓 ...

  7. MathExam第二次作业

    第二次作业:MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 30 • ...

  8. 20162314 《Program Design & Data Structures》Learning Summary Of The First Week

    20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The First Week ...

  9. Runtime 类的使用

    package com.System.Runtime; import java.io.IOException; /* RunTime 该类类主要代表了应用程序运行的环境. getRuntime() 返 ...

  10. UVA - 11021 Tribles 概率dp

    题目链接: http://vjudge.net/problem/UVA-11021 Tribles Time Limit: 3000MS 题意 有k只麻球,每只活一天就会死亡,临死之前可能会出生一些新 ...