Wisconsin Squares

It's spring in Wisconsin and time to move the yearling calves to the yearling pasture and last year's yearlings to the greener pastures of the north 40.

Farmer John has five kinds of cows on his farm (abbreviations are shown in parentheses): Guernseys (A), Jerseys (B), Herefords (C), Black Angus (D), and Longhorns (E). These herds are arranged on the 16 acre pasture, one acre for each small herd, on a 4 x 4 grid (labeled with rows and columns) like this:

              1 2 3 4
+-------
1|A B A C
2|D C D E
3|B E B C
4|C A D E

In the initial pasture layout, the herds total 3 A's, 3 B's, 4 C's, 3 D's, and 3 E's. This year's calves have one more D herd and one fewer C herd, for a total of 3 A's, 3 B's, 3 C's, 4 D's, and 3 E's.

FJ is extremely careful in his placement of herds onto his pasture grid. This is because when herds of the same types of cows are too close together, they misbehave: they gather near the fence and smoke cigarettes and drink milk. Herds are too close together when they are on the same square or in any of the eight adjacent squares.

Farmer John must move his old herd out of the field and his new herd into the field using his old brown Ford pickup truck, which holds one small herd at a time. He picks up a new herd, drives to a square in the yearling pasture, unloads the new herd, loads up the old herd, and drives the old herd to the north 40 where he unloads it. He repeats this operation 16 times and then drives to Zack's for low-fat yogurt treats and familiar wall decor.

Help Farmer John. He must choose just exactly the correct order to replace the herds so that he never puts a new herd in a square currently occupied by the same type of herd or adjacent to a square occupied by the same type of herd. Of course, once the old cows are gone and the new cows are in place, he must be careful in the future to separate herds based on the new arrangement.

Very important hint: Farmer John knows from past experience that he must move a herd of D cows first.

Find a way for Farmer John to move the yearlings to their new pasture. Print the 16 sequential herd-type/row/column movements that lead to a safe moving experience for the cows.

Calculate the total number of possible final arrangements for the 4x4 pasture and calculate the total number of ways those arrangements can be created.

PROGRAM NAME: wissqu

TIME LIMIT: 5 seconds

INPUT FORMAT

Four lines, each with four letters that denote herds.

SAMPLE INPUT (file wissqu.in)

ABAC
DCDE
BEBC
CADE

OUTPUT FORMAT

16 lines, each with a herd-type, row and column. If there are multiple solutions (and there are), you should output the solution for which the concatenated string ("D41C42A31 ... D34") of the answers is first in lexicographic order.

One more line with the total number of ways these arrangements can be created.

SAMPLE OUTPUT (file wissqu.out)

D 4 1
C 4 2
A 3 1
A 3 3
B 2 4
B 3 2
B 4 4
E 2 1
E 2 3
D 1 4
D 2 2
C 1 1
C 1 3
A 1 2
E 4 3
D 3 4
14925 ——————————————————————————————————————————————————————————题解
这是一道不需要任何优化的题
然而我不断的T
是因为我没读题……
题目中不止说了八连块,还说了当前要放置小奶牛的块不能有同种类的大奶牛
所以要不要放是九个块共同决定的……
【只有一组数据点还是样例!不走心!】
 /*
ID: ivorysi
LANG: C++
PROG: wissqu
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <set>
#include <vector>
#include <algorithm>
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
#define inf 0x5f5f5f5f
#define ivorysi
#define mo 97797977
#define hash 974711
#define base 47
#define fi first
#define se second
#define pii pair<int,int>
#define esp 1e-10
typedef long long ll;
using namespace std;
char c[][];
int calc[][][];
int dirx[]={-,,,,,-,-,,};
int diry[]={,,-,,,-,,-,};
int num[]; bool used[][];
char tempchange[];
int row[],col[];
int ans;
bool flag;
void init() {
siji(i,,) {scanf("%s",c[i]+);}
siji(i,,) {
siji(j,,) {
siji(z,,) {
int xx=i+dirx[z],yy=j+diry[z];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
}
}
}
}
siji(i,,) num[i]=;
++num[];
}
void PRINT() {
siji(i,,) {
printf("%c %d %d\n",tempchange[i],row[i],col[i]);
}
}
void dfs(int dep) {
if(dep>) {
++ans;
if(!flag) {PRINT();flag=;}
return;
}
siji(z,,) {
if(num[z]==) continue;
siji(i,,) {
siji(j,,){
if(used[i][j]) continue;
if(calc[i][j][z]==) {
used[i][j]=;
--num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][z];
}
}
if(!flag) {
tempchange[dep]='A'+z-;
row[dep]=i;
col[dep]=j;
} dfs(dep+);
used[i][j]=;
++num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][z];
}
}
}
}
}
} }
void solve() {
init();
siji(i,,) {
siji(j,,) {
if(calc[i][j][]==) {
used[i][j]=;
--num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][];
}
}
if(!flag) {
tempchange[]='D';
row[]=i;
col[]=j;
}
dfs();
used[i][j]=;
++num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][];
}
}
}
}
}
printf("%d\n",ans);
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("wissqu.in","r",stdin);
freopen("wissqu.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
return ;
}
 

USACO 6.4 Wisconsin Squares的更多相关文章

  1. USACO 3.2 Magic Squares

    Magic SquaresIOI'96 Following the success of the magic cube, Mr. Rubik invented its planar version, ...

  2. USACO Section1.2 Palindromic Squares 解题报告

    palsquare解题报告 —— icedream61 博客园(转载请注明出处)------------------------------------------------------------ ...

  3. USACO 1.2 Palindromic Squares (进制转换,回文)

    /* ID:twd30651 PROG:palsquare LANG:C++ */ #include<iostream> #include<fstream> #include& ...

  4. [hash-bfs]USACO 3.2 Magic Squares 魔板

    魔 板 魔板 魔板 题目描述 在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...

  5. USACO 6.4 章节

    The Primes 题目大意 5*5矩阵,给定左上角 要所有行,列,从左向右看对角线为质数,没有前导零,且这些质数数位和相等(题目给和) 按字典序输出所有方案... 题解 看上去就是个 无脑暴搜 题 ...

  6. USACO6.4-Wisconsin Squares:搜索

    Wisconsin Squares It's spring in Wisconsin and time to move the yearling calves to the yearling past ...

  7. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

  8. USACO 6.5 All Latin Squares

    All Latin Squares A square arrangement of numbers 1 2 3 4 5 2 1 4 5 3 3 4 5 1 2 4 5 2 3 1 5 3 1 2 4 ...

  9. 【USACO 3.2】Magic Squares

    题意 4*2个格子分别为 1234 8765 的魔板有3种操作,A:上下两排互换,B:最后一列放到第一列前面,C:中间四个顺时针旋转1格. 现在给出目标状态,找出最少步数可从原始状态到达目标状态,且输 ...

随机推荐

  1. JS中浮点数精度误差解决

    问题出现 0.1 + 0.2 = 0.30000000000000004 问题分析 对于浮点数的四则运算,几乎所有的编程语言都会有类似精度误差的问题,只不过在 C++/C#/Java 这些语言中已经封 ...

  2. jubeeeeeat

    http://cdqz.openjudge.cn/2016/0003/ 总时间限制: 1000ms 内存限制: 256000kB 描述 众所周知,LZF很喜欢打一个叫Jubeat的游戏.这是个音乐游戏 ...

  3. Tomcat开启Debug模式

    在bin/catalina.sh中添加如下行,将tomcat重启即可. 注:以下标红的7002需将其改成对象的tomcat端口即可! JAVA_OPTS=,server=y,suspend=n -Df ...

  4. Redis学习九:Redis的发布订阅

    发布订阅功能,redis也具备,但是要知道的是redis主要功能还是分布式的缓存功能,因此这种订阅发布功能很少用,有专门的kafka  activemq 等消息中间件来完成,因此本文只是简单介绍,了解 ...

  5. 用CSS3写圆角(超简单)

    前缀: -moz(例如 -moz-border-radius)用于Firefox-webkit(例如:-webkit-border-radius)用于Safari和Chrome. CSS3圆角(所有的 ...

  6. mysql的force index

    MSQL中使用order by 有个坑,会默认走order by 后面的索引.而不走where条件里应该走的索引.大家在使用时要绕过此坑. 如下语句因为order by 走了settle_id这个主键 ...

  7. 100baseT、100baseFX、1000base-SX、100/1000base-T

    100baseT.100baseFX.1000base-SX.100/1000base-T 100baseT.100baseFX都是100Mbps速率基带传输系统,唯一的不同是100baseT用的是双 ...

  8. 简单理解 NP, P, NP-complete和NP-Hard

    P是一类可以通过确定性图灵机(以下简称 图灵机)在多项式时间(Polynomial time)内解决的问题集合. NP是一类可以通过非确定性图灵机( Non-deterministic Turing ...

  9. C++传递二维数字给一个自定义函数

    如果参数是多维数组,那么参数必须指明第一维意外得所有未得长度:比如你的 void tt(char a[][20])或者 void tt(char (*a)[20]) 另外这样也是可以的char *a[ ...

  10. 简明Python教程 ~ 随书笔记

    本文是阅读<简明Python教程>所做的随书笔记,主要是记录一些自己不熟悉的用法,或者所看到的比较有意思的内容,本书英文版A Byte of Python, 中文译版 简明Python教程 ...