USACO 6.4 Wisconsin Squares
Wisconsin Squares
It's spring in Wisconsin and time to move the yearling calves to the yearling pasture and last year's yearlings to the greener pastures of the north 40.
Farmer John has five kinds of cows on his farm (abbreviations are shown in parentheses): Guernseys (A), Jerseys (B), Herefords (C), Black Angus (D), and Longhorns (E). These herds are arranged on the 16 acre pasture, one acre for each small herd, on a 4 x 4 grid (labeled with rows and columns) like this:
1 2 3 4
+-------
1|A B A C
2|D C D E
3|B E B C
4|C A D E
In the initial pasture layout, the herds total 3 A's, 3 B's, 4 C's, 3 D's, and 3 E's. This year's calves have one more D herd and one fewer C herd, for a total of 3 A's, 3 B's, 3 C's, 4 D's, and 3 E's.
FJ is extremely careful in his placement of herds onto his pasture grid. This is because when herds of the same types of cows are too close together, they misbehave: they gather near the fence and smoke cigarettes and drink milk. Herds are too close together when they are on the same square or in any of the eight adjacent squares.
Farmer John must move his old herd out of the field and his new herd into the field using his old brown Ford pickup truck, which holds one small herd at a time. He picks up a new herd, drives to a square in the yearling pasture, unloads the new herd, loads up the old herd, and drives the old herd to the north 40 where he unloads it. He repeats this operation 16 times and then drives to Zack's for low-fat yogurt treats and familiar wall decor.
Help Farmer John. He must choose just exactly the correct order to replace the herds so that he never puts a new herd in a square currently occupied by the same type of herd or adjacent to a square occupied by the same type of herd. Of course, once the old cows are gone and the new cows are in place, he must be careful in the future to separate herds based on the new arrangement.
Very important hint: Farmer John knows from past experience that he must move a herd of D cows first.
Find a way for Farmer John to move the yearlings to their new pasture. Print the 16 sequential herd-type/row/column movements that lead to a safe moving experience for the cows.
Calculate the total number of possible final arrangements for the 4x4 pasture and calculate the total number of ways those arrangements can be created.
PROGRAM NAME: wissqu
TIME LIMIT: 5 seconds
INPUT FORMAT
Four lines, each with four letters that denote herds.
SAMPLE INPUT (file wissqu.in)
ABAC
DCDE
BEBC
CADE
OUTPUT FORMAT
16 lines, each with a herd-type, row and column. If there are multiple solutions (and there are), you should output the solution for which the concatenated string ("D41C42A31 ... D34") of the answers is first in lexicographic order.
One more line with the total number of ways these arrangements can be created.
SAMPLE OUTPUT (file wissqu.out)
D 4 1
C 4 2
A 3 1
A 3 3
B 2 4
B 3 2
B 4 4
E 2 1
E 2 3
D 1 4
D 2 2
C 1 1
C 1 3
A 1 2
E 4 3
D 3 4
14925 ——————————————————————————————————————————————————————————题解
这是一道不需要任何优化的题
然而我不断的T
是因为我没读题……
题目中不止说了八连块,还说了当前要放置小奶牛的块不能有同种类的大奶牛
所以要不要放是九个块共同决定的……
【只有一组数据点还是样例!不走心!】
/*
ID: ivorysi
LANG: C++
PROG: wissqu
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <set>
#include <vector>
#include <algorithm>
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
#define inf 0x5f5f5f5f
#define ivorysi
#define mo 97797977
#define hash 974711
#define base 47
#define fi first
#define se second
#define pii pair<int,int>
#define esp 1e-10
typedef long long ll;
using namespace std;
char c[][];
int calc[][][];
int dirx[]={-,,,,,-,-,,};
int diry[]={,,-,,,-,,-,};
int num[]; bool used[][];
char tempchange[];
int row[],col[];
int ans;
bool flag;
void init() {
siji(i,,) {scanf("%s",c[i]+);}
siji(i,,) {
siji(j,,) {
siji(z,,) {
int xx=i+dirx[z],yy=j+diry[z];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
}
}
}
}
siji(i,,) num[i]=;
++num[];
}
void PRINT() {
siji(i,,) {
printf("%c %d %d\n",tempchange[i],row[i],col[i]);
}
}
void dfs(int dep) {
if(dep>) {
++ans;
if(!flag) {PRINT();flag=;}
return;
}
siji(z,,) {
if(num[z]==) continue;
siji(i,,) {
siji(j,,){
if(used[i][j]) continue;
if(calc[i][j][z]==) {
used[i][j]=;
--num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][z];
}
}
if(!flag) {
tempchange[dep]='A'+z-;
row[dep]=i;
col[dep]=j;
} dfs(dep+);
used[i][j]=;
++num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][z];
}
}
}
}
}
} }
void solve() {
init();
siji(i,,) {
siji(j,,) {
if(calc[i][j][]==) {
used[i][j]=;
--num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][];
}
}
if(!flag) {
tempchange[]='D';
row[]=i;
col[]=j;
}
dfs();
used[i][j]=;
++num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][];
}
}
}
}
}
printf("%d\n",ans);
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("wissqu.in","r",stdin);
freopen("wissqu.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
return ;
}
USACO 6.4 Wisconsin Squares的更多相关文章
- USACO 3.2 Magic Squares
Magic SquaresIOI'96 Following the success of the magic cube, Mr. Rubik invented its planar version, ...
- USACO Section1.2 Palindromic Squares 解题报告
palsquare解题报告 —— icedream61 博客园(转载请注明出处)------------------------------------------------------------ ...
- USACO 1.2 Palindromic Squares (进制转换,回文)
/* ID:twd30651 PROG:palsquare LANG:C++ */ #include<iostream> #include<fstream> #include& ...
- [hash-bfs]USACO 3.2 Magic Squares 魔板
魔 板 魔板 魔板 题目描述 在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...
- USACO 6.4 章节
The Primes 题目大意 5*5矩阵,给定左上角 要所有行,列,从左向右看对角线为质数,没有前导零,且这些质数数位和相等(题目给和) 按字典序输出所有方案... 题解 看上去就是个 无脑暴搜 题 ...
- USACO6.4-Wisconsin Squares:搜索
Wisconsin Squares It's spring in Wisconsin and time to move the yearling calves to the yearling past ...
- USACO 完结的一些感想
其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...
- USACO 6.5 All Latin Squares
All Latin Squares A square arrangement of numbers 1 2 3 4 5 2 1 4 5 3 3 4 5 1 2 4 5 2 3 1 5 3 1 2 4 ...
- 【USACO 3.2】Magic Squares
题意 4*2个格子分别为 1234 8765 的魔板有3种操作,A:上下两排互换,B:最后一列放到第一列前面,C:中间四个顺时针旋转1格. 现在给出目标状态,找出最少步数可从原始状态到达目标状态,且输 ...
随机推荐
- 博世传感器调试笔记(一)----加速度传感器BMA253
公司是bosch的代理商,最近一段时间一直在公司开发的传感器demo板上调试bosch sensor器件.涉及到的器件有7,8款,类型包括重力加速度.地磁.陀螺仪.温度.湿度.大气压力传感器等.在调试 ...
- 模块型css样式
<div id="dowork"> <div id="dowork_on">۞作业进行中</div> <div id= ...
- bzoj千题计划150:bzoj2738: 矩阵乘法
http://www.lydsy.com/JudgeOnline/problem.php?id=2738 整体二分 二维树状数组累积 #include<cstdio> #include&l ...
- 51 nod 1105 第K大的数
1105 第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 数组A和数组B,里面都有n个整数.数组C共有n^2个整数,分别是A[0] * ...
- Docker容器加载宿主机的hosts解析
前言 公司一直在用传统的tomcat下丢war包的架构体系,随着项目的增多.服务器数量的增多.需要为此花费很多时间在不同服务器的系统环境问题上.为了技术的与时俱进和工作的运维效率等方面,笔者引入doc ...
- Django 2.0.1 官方文档翻译:接下来读什么(page 14)
接下来读什么(page 14) 现在你应该已经阅读了所有的(page1-13 )介绍材料,决定继续使用Django.我们仅仅做了简要的介绍(事实上,如果你阅读了前面所有的内容,也只是全部文档的5%.) ...
- select 的字段为空,给他显示默认值
select 的字段为空,给他显示默认值: 解决办法一: select id,name,(case when level is null then 0 else level end) as a fro ...
- presto架构和原理
Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 ...
- [hadoop]hadoop api 新版本与旧版本的差别
突然现在对以后的职业方向有些迷茫,不知道去干什么,现在有一些语言基础,相对而言好的一些有Java和C,选来选去不知道该选择哪个方向,爬了好多网页后,觉得自己应该从java开始出发,之前有点心不在焉,不 ...
- kafka入门(2)- 环境部署
部署Zookeeper(单机/集群) 1.下载安装文件: http://mirror.bit.edu.cn/apache/zookeeper/ 2.解压文件(本文解压到 D:\zookeeper-3. ...