Wisconsin Squares

It's spring in Wisconsin and time to move the yearling calves to the yearling pasture and last year's yearlings to the greener pastures of the north 40.

Farmer John has five kinds of cows on his farm (abbreviations are shown in parentheses): Guernseys (A), Jerseys (B), Herefords (C), Black Angus (D), and Longhorns (E). These herds are arranged on the 16 acre pasture, one acre for each small herd, on a 4 x 4 grid (labeled with rows and columns) like this:

              1 2 3 4
+-------
1|A B A C
2|D C D E
3|B E B C
4|C A D E

In the initial pasture layout, the herds total 3 A's, 3 B's, 4 C's, 3 D's, and 3 E's. This year's calves have one more D herd and one fewer C herd, for a total of 3 A's, 3 B's, 3 C's, 4 D's, and 3 E's.

FJ is extremely careful in his placement of herds onto his pasture grid. This is because when herds of the same types of cows are too close together, they misbehave: they gather near the fence and smoke cigarettes and drink milk. Herds are too close together when they are on the same square or in any of the eight adjacent squares.

Farmer John must move his old herd out of the field and his new herd into the field using his old brown Ford pickup truck, which holds one small herd at a time. He picks up a new herd, drives to a square in the yearling pasture, unloads the new herd, loads up the old herd, and drives the old herd to the north 40 where he unloads it. He repeats this operation 16 times and then drives to Zack's for low-fat yogurt treats and familiar wall decor.

Help Farmer John. He must choose just exactly the correct order to replace the herds so that he never puts a new herd in a square currently occupied by the same type of herd or adjacent to a square occupied by the same type of herd. Of course, once the old cows are gone and the new cows are in place, he must be careful in the future to separate herds based on the new arrangement.

Very important hint: Farmer John knows from past experience that he must move a herd of D cows first.

Find a way for Farmer John to move the yearlings to their new pasture. Print the 16 sequential herd-type/row/column movements that lead to a safe moving experience for the cows.

Calculate the total number of possible final arrangements for the 4x4 pasture and calculate the total number of ways those arrangements can be created.

PROGRAM NAME: wissqu

TIME LIMIT: 5 seconds

INPUT FORMAT

Four lines, each with four letters that denote herds.

SAMPLE INPUT (file wissqu.in)

ABAC
DCDE
BEBC
CADE

OUTPUT FORMAT

16 lines, each with a herd-type, row and column. If there are multiple solutions (and there are), you should output the solution for which the concatenated string ("D41C42A31 ... D34") of the answers is first in lexicographic order.

One more line with the total number of ways these arrangements can be created.

SAMPLE OUTPUT (file wissqu.out)

D 4 1
C 4 2
A 3 1
A 3 3
B 2 4
B 3 2
B 4 4
E 2 1
E 2 3
D 1 4
D 2 2
C 1 1
C 1 3
A 1 2
E 4 3
D 3 4
14925 ——————————————————————————————————————————————————————————题解
这是一道不需要任何优化的题
然而我不断的T
是因为我没读题……
题目中不止说了八连块,还说了当前要放置小奶牛的块不能有同种类的大奶牛
所以要不要放是九个块共同决定的……
【只有一组数据点还是样例!不走心!】
 /*
ID: ivorysi
LANG: C++
PROG: wissqu
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <set>
#include <vector>
#include <algorithm>
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
#define inf 0x5f5f5f5f
#define ivorysi
#define mo 97797977
#define hash 974711
#define base 47
#define fi first
#define se second
#define pii pair<int,int>
#define esp 1e-10
typedef long long ll;
using namespace std;
char c[][];
int calc[][][];
int dirx[]={-,,,,,-,-,,};
int diry[]={,,-,,,-,,-,};
int num[]; bool used[][];
char tempchange[];
int row[],col[];
int ans;
bool flag;
void init() {
siji(i,,) {scanf("%s",c[i]+);}
siji(i,,) {
siji(j,,) {
siji(z,,) {
int xx=i+dirx[z],yy=j+diry[z];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
}
}
}
}
siji(i,,) num[i]=;
++num[];
}
void PRINT() {
siji(i,,) {
printf("%c %d %d\n",tempchange[i],row[i],col[i]);
}
}
void dfs(int dep) {
if(dep>) {
++ans;
if(!flag) {PRINT();flag=;}
return;
}
siji(z,,) {
if(num[z]==) continue;
siji(i,,) {
siji(j,,){
if(used[i][j]) continue;
if(calc[i][j][z]==) {
used[i][j]=;
--num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][z];
}
}
if(!flag) {
tempchange[dep]='A'+z-;
row[dep]=i;
col[dep]=j;
} dfs(dep+);
used[i][j]=;
++num[z];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][z];
}
}
}
}
}
} }
void solve() {
init();
siji(i,,) {
siji(j,,) {
if(calc[i][j][]==) {
used[i][j]=;
--num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
--calc[xx][yy][c[i][j]-'A'+];
++calc[xx][yy][];
}
}
if(!flag) {
tempchange[]='D';
row[]=i;
col[]=j;
}
dfs();
used[i][j]=;
++num[];
siji(k,,) {
int xx=i+dirx[k],yy=j+diry[k];
if(xx>= && xx<= && yy>= && yy<=) {
++calc[xx][yy][c[i][j]-'A'+];
--calc[xx][yy][];
}
}
}
}
}
printf("%d\n",ans);
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("wissqu.in","r",stdin);
freopen("wissqu.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
return ;
}
 

USACO 6.4 Wisconsin Squares的更多相关文章

  1. USACO 3.2 Magic Squares

    Magic SquaresIOI'96 Following the success of the magic cube, Mr. Rubik invented its planar version, ...

  2. USACO Section1.2 Palindromic Squares 解题报告

    palsquare解题报告 —— icedream61 博客园(转载请注明出处)------------------------------------------------------------ ...

  3. USACO 1.2 Palindromic Squares (进制转换,回文)

    /* ID:twd30651 PROG:palsquare LANG:C++ */ #include<iostream> #include<fstream> #include& ...

  4. [hash-bfs]USACO 3.2 Magic Squares 魔板

    魔 板 魔板 魔板 题目描述 在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...

  5. USACO 6.4 章节

    The Primes 题目大意 5*5矩阵,给定左上角 要所有行,列,从左向右看对角线为质数,没有前导零,且这些质数数位和相等(题目给和) 按字典序输出所有方案... 题解 看上去就是个 无脑暴搜 题 ...

  6. USACO6.4-Wisconsin Squares:搜索

    Wisconsin Squares It's spring in Wisconsin and time to move the yearling calves to the yearling past ...

  7. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

  8. USACO 6.5 All Latin Squares

    All Latin Squares A square arrangement of numbers 1 2 3 4 5 2 1 4 5 3 3 4 5 1 2 4 5 2 3 1 5 3 1 2 4 ...

  9. 【USACO 3.2】Magic Squares

    题意 4*2个格子分别为 1234 8765 的魔板有3种操作,A:上下两排互换,B:最后一列放到第一列前面,C:中间四个顺时针旋转1格. 现在给出目标状态,找出最少步数可从原始状态到达目标状态,且输 ...

随机推荐

  1. IOS计算文字高度

    1.计算文字长度 NSString* str = @"你好"; .f; NSStringDrawingOptions options = NSStringDrawingUsesLi ...

  2. expect嵌套shell循环

    #!/bin/bash Detailtxt="test.txt" while read line do dest=`echo $line|awk '{print $1}'` ip= ...

  3. Python json转字符串的一些细节

    要调PHP那边的接口,php那边一直都校验不过,很是郁闷.没办法,只能让人把发送成功的代码拿过来看,不过是php写的,步骤都是一样: php端: 1. json对象转json字符串. 2. 对json ...

  4. 给Ubuntu替换阿里的源

    1. 阿里巴巴镜像源站点 有所有linux的源的镜像加速. 点击查看介绍 2. 具体配置方法在这里 copy: ubuntu 18.04(bionic) 配置如下 创建自己的配置文件,比如创建文件 / ...

  5. 微服务深入浅出(8)-- 配置中心Spring Cloud Config

    Config Server从本地读取配置文件 将所有的配置文件统一写带Config Server过程的目录下,Config Server暴露Http API接口,Config Client调用Conf ...

  6. 【蓝桥杯单片机11】单总线温度传感器DS18B20的基本操作

    [蓝桥杯单片机11]单总线温度传感器DS18B20的基本操作 广东职业技术学院 欧浩源 单总线数字温度传感器DS18B20几乎成了各类单片机甚至ARM实验板的标配模块来,在蓝桥杯的往届省赛和国赛中,这 ...

  7. php strcmp()函数

    <? $str = "LAMP"; $str1 = "LAMPBrother"; $strc = strcmp($str,$str1); switch ( ...

  8. Css3帧动画深入探寻,讲点项目中实际会碰到的问题

    先加个副标题XD --如何解决background-size为100%下处理@keyframes 正是在项目中遇到副标题,才引起我更深入的探寻 先略带一下基本的css3动画 css3的动画实现是通过属 ...

  9. 未来人类T5 安装win10,ubuntu双系统

    1.首先确保win10已经安装,u盘中已刻录好系统,下载好英伟达最新驱动保存在u盘中,压缩100g的磁盘空间给ubuntu. 2.设置双显卡模式,重启时按F7选择进入u盘启动. 3.进入安装界面,选择 ...

  10. 结构体变量的sizeof计算

    结构体字节对齐准则: 1. 结构体变量的首地址能够被其最宽基本类型成员的大小所整除: 2. 结构体每个成员相对于结构体首地址的偏移量都是当前成员大小的整数倍,如有需要编译器会在成员之间加上填充字节: ...