题目

我还是太傻了

考虑每一条边的贡献,对于一条有向边\((u,v,w)\),我们求出\(k\)个关键点中到\(u\)最近的距离\(dis_1\),以及\(v\)到\(k\)个关键点中最近的距离\(dis_2\),直接用\(dis_1+w+dis_2\)来更新答案就好了

所以正反两遍\(Dij\)就好

但是需要注意到一点,如果这两个点\(k\)个关键点中到\(u\)最近的点和\(v\)最近的·点相同,那么我们不能计入答案,因为这样只是走了一个环

代码

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1e5+5;
const LL inf=9999999999999;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int st[maxn],n,m,K;
int X[maxn*5],Y[maxn*5],Z[maxn*5];
struct Shortest {
struct E{int v,nxt,w;}e[maxn*5];
int head[maxn],vis[maxn],g[maxn],num;LL d[maxn];
#define mp std::make_pair
typedef std::pair<LL,int> pii;
std::priority_queue<pii,std::vector<pii>,std::greater<pii> > q;
inline void add(int x,int y,int z) {
e[++num].v=y;e[num].nxt=head[x];e[num].w=z;head[x]=num;
}
inline void clear() {
num=0;memset(head,0,sizeof(head));memset(vis,0,sizeof(vis));
}
inline void Dij() {
for(re int i=1;i<=n;i++) d[i]=inf;
for(re int i=1;i<=K;i++) d[st[i]]=0,q.push(mp(0,st[i])),g[st[i]]=st[i];
while(!q.empty()) {
int k=q.top().second;q.pop();
if(vis[k]) continue;
vis[k]=1;
for(re int i=head[k];i;i=e[i].nxt)
if(d[e[i].v]>d[k]+e[i].w) {
d[e[i].v]=d[k]+e[i].w;g[e[i].v]=g[k];
q.push(mp(d[e[i].v],e[i].v));
}
}
}
}D[2];
int main() {
int T=read();
while(T--) {
D[0].clear(),D[1].clear();
n=read(),m=read();K=read();
for(re int x,y,z,i=1;i<=m;i++) {
x=read(),y=read(),z=read();
D[0].add(x,y,z);D[1].add(y,x,z);
X[i]=x,Y[i]=y,Z[i]=z;
}
for(re int i=1;i<=K;i++) st[i]=read();
D[0].Dij(),D[1].Dij();
LL ans=inf;
for(re int i=1;i<=m;i++)
if(D[0].g[X[i]]!=D[1].g[Y[i]])
ans=min(ans,D[0].d[X[i]]+Z[i]+D[1].d[Y[i]]);
printf("%lld\n",ans);
}
return 0;
}


「GXOI / GZOI2019」旅行者的更多相关文章

  1. 【LOJ】#3087. 「GXOI / GZOI2019」旅行者

    LOJ#3087. 「GXOI / GZOI2019」旅行者 正着求一遍dij,反着求一遍,然后枚举每条边,从u到v,如果到u最近的点和v能到的最近的点不同,那么可以更新答案 没了 #include ...

  2. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  3. 【LOJ3087】「GXOI / GZOI2019」旅行者

    题意 给定一个 \(n\) 个点 \(m\) 条边的的有向图,给出 \(k\) 个关键点,求关键点两两最短路的最小值. \(n\le 10^5, m\le 5\cdot 10^5\). 题解 二进制分 ...

  4. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  5. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  6. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  7. 【LOJ】#3088. 「GXOI / GZOI2019」旧词

    LOJ#3088. 「GXOI / GZOI2019」旧词 不懂啊5e4感觉有点小 就是离线询问,在每个x上挂上y的询问 然后树剖,每个节点维护轻儿子中已经被加入的点的个数个数乘上\(dep[u]^{ ...

  8. 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症

    LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...

  9. 【LOJ】#3085. 「GXOI / GZOI2019」特技飞行

    LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小 ...

随机推荐

  1. F#注解

    不要问我为啥要学F#——因为气质摆在那里 标注:以下内容均来自 anderslly F#系列 1.类型推演 let square x = x * x //接受一个某类型参数的quare函数返回一个这个 ...

  2. 撩课-Java每天5道面试题第24天

    151.springMVC和struts2的区别有哪些? .springmvc的入口是一个servlet即前端控制器(DispatchServlet), 而struts2入口是一个filter过虑器( ...

  3. python中作用域

    Python 中,一个变量的作用域总是由在代码中被赋值的地方所决定的. 函数定义了本地作用域,而模块定义的是全局作用域.如果想要在函数内定义全局作用域,需要加上global修饰符. 变量名解析:LEG ...

  4. vue如何实现代码打包分离(按需加载)

    在vue中使用import()来代替require.ensure()实现代码打包分离 一.require.ensure() 方法来实现代码打包分离 require.ensure() 是 webpack ...

  5. thymeleaf 标签使用方法

    使用thymeleaf首先添加依赖,<dependency><groupId>org.springframework.boot</groupId><artif ...

  6. 【MUI框架】学习笔记整理 Day 2

    参考整理自MUI官网 http://dev.dcloud.net.cn/mui/ui/ (1)numbox(数字输入框) mui提供了数字输入框控件,可直接输入数字,也可以点击“+”.“-”按钮变换当 ...

  7. ios或者cocos2d-x开发在Xcode编译时自适应失效,获取屏幕尺寸不准确

    在cocos2d-x的开发中,发现之前很好使的 setDesignResolutionSize(960.0f, 640.0f, kResolutionExactFit)自适应不好用了,后来调试发现不是 ...

  8. VMware桥接模式下主机和和虚机间互相ping不通的处理方法

    在 "编辑"->"虚拟网络编辑器" 里面的vmnet0 桥接模式 里面是自动连接,把他改为真实的物理网卡即可,如下图:

  9. 数字时钟(DigitalClock)

    数字时钟(DigitalClock) 这个其实就是我们平时看到的手机上面显示的时间 很简单 1.Activity //数字时钟 public class DigitalClockActivity ex ...

  10. use ROW_NUMBER() for pagination in Oracle and SQLServer

    ------------------------------------------------------------------------Oracle---------------------- ...