Sequential projection learning for hashing阅读笔记
真不能再挖坑了,前面挖聊很多坑都没来得及填,从今往后,能写多少就是多少。Sequential projection learning for hashing这篇文章去年就阅读了,当时阅读完没来得及做笔记,这一段时间又重新拿来品读了一年天,并对其中的公式进行了推导,这篇文章作者主页上有slide,讲得挺好的。下面是自己的一些推导,由于公式编辑起来不急手写得快,所以就用笔记代替了。
这里标号为1推导的是paper目标函数项中的第一项,目标函数第二项是通过最大化信息熵而来的,关于到最后为神马转化为了求信息熵最大化,仍本小子一一道来。
有了第一项,还远远不够,因为第一项只保持能够在带标记的样本上获得很高的准确率,当不能保证在未标记的样本上也能获得较高的准确率,也就是过拟合问题,即在训练样本上performance很well,但是在测试样本上很bad。所以为了避免出现这个问题,作者对spectral hashing中要求的编码位求和相加得为0进行了分析与证明,最后得出要要求编码位求和相加为0就是要求信息熵最大。paper中的一个图很好的说明了上面这个情况:

为便于理解,假设上面就是简单的二维平面,在左图中,虽然对于带标记的样本,其编码位(这里只有一位)相加求和为0,但对于未标记的样本,其编码位相加求和显然不会等于0,而且,可以看到,落入分类面右边的可能性要远比左边的要大;而对于右图,其划分相比比较均匀,不仅满足了标记样本的要求,而且也满足了非标记样本的要求(编码位求和相加为0),而且,大概的示意出了落入两边的概率为50%。由此,对于右图,其包含的信息熵相比与左图,要更大。用一句话概括上面第二项为神马要进行这样的约束,其实就是要求编码位求和相加为0,并经过转换,化为信息熵最大的约束。
再回到上面手写笔记那幅图,标号2对应位置有关于S更新过程的推导,推导过程还算简单,对其求微分便可。本小子不太理解的地方还是这个S更新过程的物理意义。
Reference:
1:Sequential Projection Learning for Hashing with Compact Codes
from: http://yongyuan.name/blog/sequential-projection-learning-for-hashing.html
Sequential projection learning for hashing阅读笔记的更多相关文章
- Who Am I? Personality Detection based on Deep Learning for Texts 阅读笔记
文章目录 源代码github地址 摘要 2CLSTM 过程 1. 词嵌入 2. 2LSTM处理 3. CNN学习LSGCNN学习LSG 4. Softmax分类 源代码github地址 https:/ ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- 阅读《LEARNING HARD C#学习笔记》知识点总结与摘要系列文章索引
从发表第一篇文章到最后一篇文章,时间间隔有整整一个月,虽只有5篇文章,但每一篇文章都是我吸收<LEARNING HARD C#学习笔记>这本书的内容要点及网上各位大牛们的经验,没有半点废话 ...
- 阅读《LEARNING HARD C#学习笔记》知识点总结与摘要三
最近工作较忙,手上有几个项目等着我独立开发设计,所以平时工作日的时候没有太多时间,下班累了就不想动,也就周末有点时间,今天我花了一个下午的时间来继续总结与整理书中要点,在整理的过程中,发现了书中的一些 ...
- 阅读《LEARNING HARD C#学习笔记》知识点总结与摘要二
今天继续分享我的阅读<LEARNING HARD C#学习笔记>知识点总结与摘要二,仍然是基础知识,但可温故而知新. 七.面向对象 三大基本特性: 封装:把客观事物封装成类,并隐藏类的内部 ...
- 阅读《LEARNING HARD C#学习笔记》知识点总结与摘要一
本人有幸在Learning Hard举行的整点抢书活动<Learninghard C#学习笔记>回馈网友,免费送书5本中免费获得了一本<LEARNING HARD C#学习笔记> ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- Deep Learning of Graph Matching 阅读笔记
Deep Learning of Graph Matching 阅读笔记 CVPR2018的一篇文章,主要提出了一种利用深度神经网络实现端到端图匹配(Graph Matching)的方法. 该篇文章理 ...
- 【转载】 《Human-level concept learning through probabilistic program induction》阅读笔记
原文地址: https://blog.csdn.net/ln1996/article/details/78459060 --------------------- 作者:lnn_csdn 来源:CSD ...
随机推荐
- 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)
题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...
- 将C++ IplImage 图像用C#读取
如何将C++ IplImage 图像用C#读取 ? 将opencv 的C++程序做成 dll 动态链接库 用C#调用 当然这里需要安装emgucv ,也可以自己实现这个类. 下面我把实现贴出来给大 ...
- Bootstrap入门七:按钮
1.可作为按钮使用的标签或元素 为 <a>.<button> 或 <input> 元素添加按钮类(button class)即可使用 Bootstrap 提供的样式 ...
- Qt Creator在Windows上的调试器安装与配置
如果安装Qt时使用的是Visual Studio的预编译版,那么很有可能就会缺少调试器(Debugger),而使用MSVC的Qt对应的原生调试器是CDB(对应MinGW的Qt使用GDB调试器).本文介 ...
- Spring Boot使用Log4j Implemented Over SLF4J生成日志并在控制台打印
Spring Boot设置切面,执行方法的时候在控制台打印出来,并生成日志文件 引入依赖: <!--日志--> <dependency> <groupId>org. ...
- bs和cs
CS(Client/Server):客户端----服务器结构.C/S结构在技术上很成熟,它的主要特点是交互性强.具有安全的存取模式.网络通信量低.响应速度快.利于处理大量数据.因为客户端要负责绝大多数 ...
- leetcode 算法 Excel表列序号 python实现
这道题给我感觉就像一个26进制数一样. A 就是1 B是2 .... Z 是26 如果AB 两位,那就是 1 * 26 + 2 就是A 的数值*26 + B的数值 如果是MNP 三位数 那就 ...
- HDU 5517 【二维树状数组///三维偏序问题】
题目链接:[http://acm.split.hdu.edu.cn/showproblem.php?pid=5517] 题意:定义multi_set A<a , d>,B<c , d ...
- IE7 css兼容问题
1,float:right; 在IE错位问题 : 使用position:absolute:right:0px; 2,汉字在float状态下 折行 ,可能是因为父级宽度不够, 改用 display:in ...
- OpenGL ES 3.0 帧缓冲区对象基础知识
最近在帧缓冲区对象这里卡了一下,不过前面已经了解了相关的OpenGL ES的知识,现在再去了解就感觉轻松多了.现在就进行总结. 基础知识 我们知道,在应用程序调用任何的OpenGL ES命令之前,需要 ...