简单原理流程转自:http://wenku.baidu.com/link?url=57aywD0Q6WTnl7XKbIHuEwWENnSuPS32QO8X0a0gHpOOzdnNt_K0mK2cucVaEHVSAjHvBCvQNZGhe_TEgWoDeVoWNBATyAa0bc5eDZQweEm

详细原理和实验1PMTK ToolBox和实验2LibSVM转自:http://blog.163.com/huai_jing@126/blog/static/171861983201171410833824/

matlab使用:http://wenku.baidu.com/link?url=LUhL9dE1zi2R5VQMIHCicN2bAxcCea_f7wjrek73PkUkfpLKEYRx8hOlG45zgYYgMkcKh92FW1l-6LecvpjjzsBJDVsPFME38frt8rtj-H7

1.matlab自带的有svmtrain,svmclassify。其中svmtrain理解:http://blog.sina.com.cn/s/blog_48e6733501016dhl.html

  svmtrain理解:Training是一个M行N列的矩阵,M是样本数,N是特征维数。Group:是个列向量,表示样本对应的类别,用字符串表示(可以用数字或单个字符)。举例:svmStruct = svmtrain(sd,Y,'Kernel_Function','quadratic', 'showplot',true);

    其中Kernel_FunctionValue 有如下些可选类别:

    •   linear — Default. Linear kernel or dot product.
    •   quadratic — Quadratic kernel.
    •   rbf — Gaussian Radial Basis Function kernel with a default scaling factor, sigma, of 1.
    •   polynomial — Polynomial kernel with a default order of 3.
    •   mlp — Multilayer Perceptron kernel with default scale and bias parameters of [1, -1].
    •   fuction

圆圈代表 支撑的向量

svmclassify函数的举例RD=svmclassify(svmStruct,sd,'showplot',true);

2.libsvm中举例:

model = svmtrain( allcoor_label, allcoor,'-c 1 -g 0.007 -t 0');
[ptrain_label, train_accuracy] = svmpredict( allcoor_label, allcoor, model);

其中options涵义如下:

-s svm类型:设置SVM 类型,默认值为0,可选类型有:

0 -- C- SVC

1 -- nu - SVC

2 -- one-class-SVM

3 -- e - SVR

4 -- nu-SVR

-t 核函数类型:设置核函数类型,默认值为2,可选类型有:

0 -- 线性核:u'*v

1 -- 多项式核:(g*u'*v+ coef0)degree

2 -- RBF 核:exp(-||u-v||*||u-v||/g*g)

3 -- sigmoid 核:tanh(g*u'*v+ coef 0)

-d degree:核函数中的degree设置,默认值为3;

-g r(gama):核函数中的函数设置(默认1/ k);

-r coef 0:设置核函数中的coef0,默认值为0;

-c cost:设置C- SVC、e - SVR、n - SVR中从惩罚系数C,默认值为1;

-n nu :设置nu - SVC、one-class-SVM 与nu - SVR 中参数nu ,默认值0.5;

-p e :核宽,设置e - SVR的损失函数中的e ,默认值为0.1;

-m cachesize:设置cache内存大小,以MB为单位(默认40):

-e e :设置终止准则中的可容忍偏差,默认值为0.001;

-h shrinking:是否使用启发式,可选值为0 或1,默认值为1;

-b 概率估计:是否计算SVC或SVR的概率估计,可选值0 或1,默认0;

-wi weight:对各类样本的惩罚系数C加权,默认值为1;

-v n:n折交叉验证模式。

附: MATLAB自带的svm实现函数与libsvm差别小议:
1 MATLAB自带的svm实现函数仅有的模型是C-SVC(C-support vector classification); 而libsvm工具箱有C-SVC(C-support vector classification),nu-SVC(nu-support vector classification),one-class SVM(distribution estimation),epsilon-SVR(epsilon-support vector regression),nu-SVR(nu-support vector regression)等多种模型可供使用。
2 MATLAB自带的svm实现函数仅支持分类问题,不支持回归问题;而libsvm不仅支持分类问题,亦支持回归问题。
3 MATLAB自带的svm实现函数仅支持二分类问题,多分类问题需按照多分类的相应算法编程实现;而libsvm采用1v1算法支持多分类。
4 MATLAB自带的svm实现函数采用RBF核函数时无法调节核函数的参数gamma,貌似仅能用默认的;而libsvm可以进行该参数的调节。
5 libsvm中的二次规划问题的解决算法是SMO;而MATLAB自带的svm实现函数中二次规划问题的解法有三种可以选择:经典二次方法;SMO;最小二乘。(这个是我目前发现的MATLAB自带的svm实现函数唯一的优点~)

摘自:http://www.ilovematlab.cn/thread-85860-1-1.html

SVM (support vector machine)的更多相关文章

  1. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  2. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  3. 使用Support Vector Machine

    使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...

  4. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  5. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  6. 支持向量机(Support Vector Machine,SVM)—— 线性SVM

      支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...

  7. Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界

    在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...

  8. 6. support vector machine

    1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...

  9. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

随机推荐

  1. 20155238 2016-2017-2 《Java程序设计》第三周学习总结

    教材学习内容总结 类定义使用class关键词,名称使用Cloths,建立实例运用New关键词 Clothes c1 = new Clothes(); = :制定参考名称参考某个对象 == :比较参考名 ...

  2. Oracle数据库无法向listener注册的解决一例

    当机器的IP地址改变了,或者机器名改变后, 动态注册可能会失败. 运行 lsnrctl status时,无论等待多久,都会发生:no services 这样的信息. 此时,最好的解决方法,就是删除原有 ...

  3. 对Dataguard的三种模式的理解

    模式1:最大可保护模式: 必须同步. 模式2:最大可用性模式: 能同步就同步,不能同步就不同步. 模式3:最大性能模式: 异步模式.

  4. 6 [面向对象]-property

    1.特性(property) 什么是特性property property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值 例一:BMI指数(bmi是计算而来的,但很明显它听起来像是一个属性 ...

  5. 03 - django简介

    1.MVC与MTV模型 2.Django的下载与基本命令 pip install django==2.0.1 第三方库安装到哪里了? 创建一个django project C:\Desktop\fir ...

  6. 新买的orico蓝牙usb连接器使用方法与驱动

    因为买的型号是 BTA-403 ,所以需要下载该型号驱动 安装好后,可能会出现找不到蓝牙设备问题,所以需要重启机器,并且手动将pc蓝牙连接到手机蓝牙,然后手机蓝牙再连接蓝牙耳机,此时蓝牙耳机会显示连接 ...

  7. 由 Session 和 Cookie 的区别说起

    Session 和 Cookie 有什么区别? 最近面试被问到这个问题,和面试官一番讨论了解到面试官心里的答案后,我不太满意. 面对上面的问题,如果是刚毕业时的我,一定会毫不犹豫说出 Cookie 是 ...

  8. mysql面试常见题目2

    Sutdent表的定义 字段名 字段描述 数据类型 主键 外键 非空 唯一 自增 Id 学号 INT(10) 是 否 是 是 是 sName 姓名 VARCHAR(20) 否 否 是 否 否 Sex ...

  9. 模拟websocket推送消息服务mock工具二

    模拟websocket推送消息服务mock工具二 在上一篇博文中有提到<使用electron开发一个h5的客户端应用创建http服务模拟后端接口mock>使用electron创建一个模拟后 ...

  10. Python之NMAP详解

    一.NMAP简介 NMap,也就是Network Mapper,最早是Linux下的网络扫描和嗅探工具包. nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端.确定哪些服务运行在哪些连 ...