bzoj1497【NOI2006】最大获利
1497: [NOI2006]最大获利
Time Limit: 5 Sec Memory Limit: 64 MB id=1497" style="color:blue; text-decoration:none">Submit id=1497" style="color:blue; text-decoration:none">Status
Submit: 3437 Solved: 1674
[
Description
新的技术正冲击着手机通讯市场。对于各大运营商来说,这既是机遇,更是挑战。
THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜。须要做太多的准备工作。仅就站址选择一项。就须要完毕前期市场研究、站址勘測、最优化等项目。
在前期市场调查和站址勘測之后,公司得到了一共N个能够作为通讯信号中转站的地址,而因为这些地址的地理位置差异,在不同的地方建造通讯中转站须要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站须要的成本为Pi(1≤i≤N)。另外公司调查得出了全部期望中的用户群。一共M个。关于第i个用户群的信息概括为Ai,
Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司能够获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司能够有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么怎样选择终于建立的中转站才干让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
Input
输入文件里第一行有两个正整数N和M 。第二行中有N个整数描写叙述每个通讯中转站的建立成本。依次为P1, P2, …, PN 。
下面M行。第(i + 2)行的三个数Ai, Bi和Ci描写叙述第i个用户群的信息。
全部变量的含义能够參见题目描写叙述。
Output
你的程序仅仅要向输出文件输出一个整数。表示公司能够得到的最大净获利。
Sample Input
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
Sample Output
HINT
【例子说明】选择建立1、2、3号中转站,则须要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出仅仅有和我们的答案全然一致才干获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
Source
最小割的应用
先定义s割为选。t割为不选。
我们能够先将全部收益加起来,再减去最小代价,即为终于答案。
从源点s到全部用户节点i连边(s,i,c[i]),表示假设用户i不能满足,就会付出c[i]的代价。
从全部中转站节点i到汇点t连边(i,t,p[i]),表示假设要建立中转站i。就要付出p[i]的代价。
然后考虑用户对中转站的要求,两个中转站中仅仅要有一个没有,这个用户就不能满足,即仅仅要有一个中转站属于t割,那该用户也属于t割。仅仅要连边(i,a[i],inf)和(i,b[i],inf),由于长度为inf的边是一定不会成为割的。这种方法非常巧妙。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
#define maxn 60000
#define maxm 320000
#define inf 1000000000
using namespace std;
struct edge_type
{
int next,to,v;
}e[maxm];
int head[maxn],cur[maxn],dis[maxn];
int n,m,s,t,cnt=1,ans=0,x,y,z;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y,int v)
{
e[++cnt]=(edge_type){head[x],y,v};head[x]=cnt;
e[++cnt]=(edge_type){head[y],x,0};head[y]=cnt;
}
inline bool bfs()
{
queue<int>q;
memset(dis,-1,sizeof(dis));
dis[s]=0;q.push(s);
while(!q.empty())
{
int tmp=q.front();q.pop();
if (tmp==t) return true;
for(int i=head[tmp];i;i=e[i].next) if (e[i].v&&dis[e[i].to]==-1)
{
dis[e[i].to]=dis[tmp]+1;
q.push(e[i].to);
}
}
return false;
}
inline int dfs(int x,int f)
{
int tmp,sum=0;
if (x==t) return f;
for(int &i=cur[x];i;i=e[i].next)
{
int y=e[i].to;
if (e[i].v&&dis[y]==dis[x]+1)
{
tmp=dfs(y,min(f-sum,e[i].v));
e[i].v-=tmp;e[i^1].v+=tmp;sum+=tmp;
if (sum==f) return sum;
}
}
if (!sum) dis[x]=-1;
return sum;
}
inline void dinic()
{
while (bfs())
{
F(i,1,t) cur[i]=head[i];
ans-=dfs(s,inf);
}
}
int main()
{
n=read();m=read();
s=n+m+1;t=s+1;
F(i,1,n)
{
z=read();
add_edge(i+m,t,z);
}
F(i,1,m)
{
x=read();y=read();z=read();
ans+=z;
add_edge(s,i,z);
add_edge(i,x+m,inf);
add_edge(i,y+m,inf);
}
dinic();
printf("%d\n",ans);
}
bzoj1497【NOI2006】最大获利的更多相关文章
- BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4375 Solved: 2142[Submit][Status] ...
- BZOJ 1497 [NOI2006]最大获利
1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...
- bzoj1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...
- [bzoj1497][NOI2006]最大获利_网络流_最小割
最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...
- Bzoj1497 [NOI2006]最大获利
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4449 Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...
- BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP
原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...
- BZOJ1497[NOI2006]最大获利——最大权闭合子图
题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...
- 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利
[题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...
- 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利
最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...
- bzoj1497 [NOI2006]最大获利 最大权闭合子图
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...
随机推荐
- [luogu] P4105 [HEOI2014]南园满地堆轻絮 (贪心)
P4105 [HEOI2014]南园满地堆轻絮 题目描述 小 Z 是 ZRP(Zombies' Republic of Poetry,僵尸诗歌共和国)的一名诗歌爱好者,最近 他研究起了诗词音律的问题. ...
- Redis:基础知识及其常用数据类型和关键字
Redis: Redis是什么: REmote DIctionary Server(远程字典服务器) 是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(Key-Value)分布式内存数 ...
- 4.AND,OR
4.WHERE中使用AND,OR连接多个过滤条件 AND:并且的关系,要求条件同时满足 OR:或者的关系,要求条件满足某一个就可以 //查询10部门,基本工资大于2000的员工 ...
- 数据库-mongodb-Gridfs
GridFS是一种将大型文件存储在MongoDB的文件规范: 数据库支持以BSON格式保存二进制对象. 但是MongoDB中BSON对象最大不能超过4MB. GridFS 规范提供了一种透明的机制,可 ...
- Qt之二维码扫描
简述 二维码(QR Code)是用某种特定的几何图形按一定规律在平面(二维方向)分布的黑白相间的图形记录数据符号信息的.是所有信息数据的一把钥匙.应用十分广泛,如:产品防伪/溯源.广告推送.网站链接. ...
- c/c++常见试题
- Sping框架中的注解详解
传统的Spring做法是使用.xml文件来对bean进行注入或者是配置aop.事物,这么做有两个缺点:1.如果所有的内容都配置在.xml文件中,那么.xml文件将会十分庞大:如果按需求分开.xml文件 ...
- nyoj--1087--摆方格(规律)
摆方格 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给你一个n*n的方格,每个方格里的数必须连续摆放如 1 2 4 3 ,下图为不连续的,请输出从左上角到右下角的对角 ...
- linux下挂载ISCSI存储设备
安装 首先要在存储设备上做好RAID,设置好iSCSI 目标方(target). 这里主要说明iSCSI initiator的安装. 不同的操作系统对应各自的iSCSI initiator,以Redh ...
- vue 组件之间的传值
父向子传值父组件 <v-footer :projectdat="dat"></v-footer> export default { data() { ret ...