TOYS
 

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
题意:
一个矩形箱子,左上角与右下角的坐标给出,里面有n块板把箱子里的空间分隔成许多个分区,给出这些板在上边的x坐标、下边的x坐标,以及一堆玩具的坐标,求这些分区里的玩具数目。
题解:

记玩具在点p0,某块板的上边点是p1,下边点是p2,p2p1(向量)×p2p0>0表示p0在p1p2的左面,<0表示在右面。接下来就是用二分法找出每个点所在的分区。

叉积+二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e6+, M = , mod = 1e9 + , inf = 0x3f3f3f3f;
typedef long long ll;
int n,m,x1,x2,y11,y2,ans[N],t1,t2;
struct point{int x,y;};
struct segment{point a,b;}s[N]; point sub(point a,point b) {//向量
point t;
t.x = a.x-b.x;
t.y = a.y-b.y;
return t;
}
int cross(point a,point b){//叉积公式
return a.x*b.y-b.x*a.y;
}
int turn(point p1,point p2,point p3){ //叉积
return cross(sub(p2,p1),sub(p3,p1));
}
void searchs(point x) {
int l=,r=n,mid,t=;
while(l<=r) {
mid = (l+r)>>;
if(turn(s[mid].a,s[mid].b,x) >= ) {
t = mid;l=mid+;
}
else r = mid-;
}
ans[t]++;
}
int main() {
while(scanf("%d",&n)&&n) {
memset(ans,,sizeof(ans));
scanf("%d%d%d%d%d",&m,&x1,&y11,&x2,&y2);
for(int i=;i<=n;i++){
scanf("%d%d",&t1,&t2);
s[i].a.x=t1;s[i].a.y=y11;
s[i].b.x=t2;s[i].b.y=y2;
}
for(int i=;i<=m;i++) {
point t;
scanf("%d%d",&t.x,&t.y);
searchs(t);
}
for(int i=;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
printf("\n");
}
}

POJ 2318 叉积判断点与直线位置的更多相关文章

  1. POJ2318TOYS(叉积判断点与直线位置)

    题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...

  2. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  3. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  4. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  5. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  6. poj 2398(叉积判断点在线段的哪一侧)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5016   Accepted: 2978 Descr ...

  7. POJ2318 TOYS(叉积判断点与直线的关系+二分)

    Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a prob ...

  8. POJ 2398 map /// 判断点与直线的位置关系

    题目大意: poj2318改个输出 输出 a: b 即有a个玩具的格子有b个 可以先看下poj2318的报告 用map就很方便 #include <cstdio> #include < ...

  9. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

随机推荐

  1. awesome-free-software

    Free software is distributed under terms that allow users to run the program for any purpose, study ...

  2. MyEclipse 安装svn 插件步骤详情

    方法一:在线安装 打开HELP- > MyEclipse Configuration Center.切换到SoftWare标签页. 点击Add Site 打开对话框,在对话框Name输入Svn, ...

  3. 将查询到的数据导出到Excel终结版

    吐槽 最近新项目需要用到导出数据到Excel,试了试之前写的一篇博文,但是感觉那个不太好,主要原因是没能实现样式控制,今天我们就来介绍一种新的导出Excel方法,而且这种方法很轻量级,它利用xml生成 ...

  4. Activity全屏沉浸状态

    public class MainActivity extends AppCompatActivity { private static final String TAG = "MainAc ...

  5. JEE Spring-boot 简单的ioc写法。

    什么是ioc,就是你可能会有一些生活必需品,这些东西你必须要用才能存活.但是你不是每天都回去买,去哪一家点去买.而这些用品会一直放在哪里,每一个商店就是一个容器,包裹着这些物品. 创建ioc项目,首先 ...

  6. HTTP+XML接口客户端 结合策略模式实现总结

    在项目中,我们经常会使用到http+xml的接口,而且不仅仅的是一个,可能会有多个http的接口需要实时的交互.但是http接口的发送消息的公共部分是一样的,只有每个接口的报文解析和返回报文是不同的, ...

  7. windows 2008 中IIS7.0以上如何设置404错误页面

    404错误页面的设置,不仅仅可以提高用户体验度,从SEO方面考虑,也是非常重要的.今天,笔者在这里介绍一下在windows 2008下如何设置404错误页面. 注意:设置404有我这里介绍2种方式,推 ...

  8. Java中更精确的计时

    我们一般的java运输计时代码是 long begintime = System.currentTimeMillis(); //运算代码 long endtinme=System.currentTim ...

  9. Win7下安装Flash低版本

    我把HKEY_LOCAL_MACHINE\SOFTWARE\Macromedia\FlashPlayer\SafeVersions中高于要装的版本的项目都删了,还是不行. 看了这个帖子后发现,原来64 ...

  10. 动态生成的dom元素绑定事件

    要求:要绑定到父元素上$(".school_Inlists").on("click",".chose_Inbtn",function(){ ...