TOYS
 

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
题意:
一个矩形箱子,左上角与右下角的坐标给出,里面有n块板把箱子里的空间分隔成许多个分区,给出这些板在上边的x坐标、下边的x坐标,以及一堆玩具的坐标,求这些分区里的玩具数目。
题解:

记玩具在点p0,某块板的上边点是p1,下边点是p2,p2p1(向量)×p2p0>0表示p0在p1p2的左面,<0表示在右面。接下来就是用二分法找出每个点所在的分区。

叉积+二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e6+, M = , mod = 1e9 + , inf = 0x3f3f3f3f;
typedef long long ll;
int n,m,x1,x2,y11,y2,ans[N],t1,t2;
struct point{int x,y;};
struct segment{point a,b;}s[N]; point sub(point a,point b) {//向量
point t;
t.x = a.x-b.x;
t.y = a.y-b.y;
return t;
}
int cross(point a,point b){//叉积公式
return a.x*b.y-b.x*a.y;
}
int turn(point p1,point p2,point p3){ //叉积
return cross(sub(p2,p1),sub(p3,p1));
}
void searchs(point x) {
int l=,r=n,mid,t=;
while(l<=r) {
mid = (l+r)>>;
if(turn(s[mid].a,s[mid].b,x) >= ) {
t = mid;l=mid+;
}
else r = mid-;
}
ans[t]++;
}
int main() {
while(scanf("%d",&n)&&n) {
memset(ans,,sizeof(ans));
scanf("%d%d%d%d%d",&m,&x1,&y11,&x2,&y2);
for(int i=;i<=n;i++){
scanf("%d%d",&t1,&t2);
s[i].a.x=t1;s[i].a.y=y11;
s[i].b.x=t2;s[i].b.y=y2;
}
for(int i=;i<=m;i++) {
point t;
scanf("%d%d",&t.x,&t.y);
searchs(t);
}
for(int i=;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
printf("\n");
}
}

POJ 2318 叉积判断点与直线位置的更多相关文章

  1. POJ2318TOYS(叉积判断点与直线位置)

    题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...

  2. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  3. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  4. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  5. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  6. poj 2398(叉积判断点在线段的哪一侧)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5016   Accepted: 2978 Descr ...

  7. POJ2318 TOYS(叉积判断点与直线的关系+二分)

    Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a prob ...

  8. POJ 2398 map /// 判断点与直线的位置关系

    题目大意: poj2318改个输出 输出 a: b 即有a个玩具的格子有b个 可以先看下poj2318的报告 用map就很方便 #include <cstdio> #include < ...

  9. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

随机推荐

  1. 升级Xcode 导致插件失效的解决的方法

    我们在升级xcode的情况下,我们的一些第三方插件就会失效. 比方cocoapods,等比較重要的三方插件, 解决这个问题例如以下: 进入插件文件夹:~/Library/Application Sup ...

  2. mysql安装出错cannot create windows service for mysql.error:0

    配置时最后一步出现不能启动mysql 解决成功的办法:[MySQL] Could not start the service MySQL 解决方法 安装mysql 5.1.33,在运行Server I ...

  3. hdu2688 Rotate(树状数组)

    题目链接:pid=2688">点击打开链接 题意描写叙述:对一个长度为2<=n<=3000000的数组,求数组中有序对(i<j而且F[i]<F[j])的数量?其 ...

  4. PBKDF2加密的实现

    PBKDF2(Password-Based Key Derivation Function). 通过哈希算法进行加密.由于哈希算法是单向的,能够将不论什么大小的数据转化为定长的"指纹&quo ...

  5. UVA 1541 - To Bet or Not To Bet 记忆化DP概率

    Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a n ...

  6. 杂项-分布式:Hadoop

    ylbtech-杂项-分布式:Hadoop Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和 ...

  7. C# WebAPI小记

    新建WebAPI项目 新建一个Model 安装Entity Framework 添加连接字符串 去Web.config 中 <configuration> 节点中最下面添加 在Word中编 ...

  8. Android GreenDao 使用教程

    上一篇 总结了grendao 环境搭建以及简单的增删查改,接下来将全面解析框架的使用,基于上篇的orm模型(Note)数据库讲解 GreenDao的插入: 插入的方式有很多: daoSession.g ...

  9. Android 制作类似支付圆圈和打钩界面ProgressWheel

    首先要说明的是,制作圆圈旋转的效果并不是博主做的,是参照了github上的一个代码,只是在上面添加了修改,对其优化并增加了一个打钩的动画. 先来看下效果,1+的手机获取root权限真是难,没法录屏,只 ...

  10. 子线程创建AlertDialog错误

    Can't create handler inside thread that has not called Looper.prepare()