TOYS
 

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
题意:
一个矩形箱子,左上角与右下角的坐标给出,里面有n块板把箱子里的空间分隔成许多个分区,给出这些板在上边的x坐标、下边的x坐标,以及一堆玩具的坐标,求这些分区里的玩具数目。
题解:

记玩具在点p0,某块板的上边点是p1,下边点是p2,p2p1(向量)×p2p0>0表示p0在p1p2的左面,<0表示在右面。接下来就是用二分法找出每个点所在的分区。

叉积+二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e6+, M = , mod = 1e9 + , inf = 0x3f3f3f3f;
typedef long long ll;
int n,m,x1,x2,y11,y2,ans[N],t1,t2;
struct point{int x,y;};
struct segment{point a,b;}s[N]; point sub(point a,point b) {//向量
point t;
t.x = a.x-b.x;
t.y = a.y-b.y;
return t;
}
int cross(point a,point b){//叉积公式
return a.x*b.y-b.x*a.y;
}
int turn(point p1,point p2,point p3){ //叉积
return cross(sub(p2,p1),sub(p3,p1));
}
void searchs(point x) {
int l=,r=n,mid,t=;
while(l<=r) {
mid = (l+r)>>;
if(turn(s[mid].a,s[mid].b,x) >= ) {
t = mid;l=mid+;
}
else r = mid-;
}
ans[t]++;
}
int main() {
while(scanf("%d",&n)&&n) {
memset(ans,,sizeof(ans));
scanf("%d%d%d%d%d",&m,&x1,&y11,&x2,&y2);
for(int i=;i<=n;i++){
scanf("%d%d",&t1,&t2);
s[i].a.x=t1;s[i].a.y=y11;
s[i].b.x=t2;s[i].b.y=y2;
}
for(int i=;i<=m;i++) {
point t;
scanf("%d%d",&t.x,&t.y);
searchs(t);
}
for(int i=;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
printf("\n");
}
}

POJ 2318 叉积判断点与直线位置的更多相关文章

  1. POJ2318TOYS(叉积判断点与直线位置)

    题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...

  2. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  3. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  4. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  5. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  6. poj 2398(叉积判断点在线段的哪一侧)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5016   Accepted: 2978 Descr ...

  7. POJ2318 TOYS(叉积判断点与直线的关系+二分)

    Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a prob ...

  8. POJ 2398 map /// 判断点与直线的位置关系

    题目大意: poj2318改个输出 输出 a: b 即有a个玩具的格子有b个 可以先看下poj2318的报告 用map就很方便 #include <cstdio> #include < ...

  9. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

随机推荐

  1. bzoj1790: [Ahoi2008]Rectangle 矩形藏宝地

    被统考草翻回来做题不太行啊,线段树和cdq都写挂细节 这题大概就是四维偏序吧,欸n怎么到了20w,只能水70啊 但是这个好像只要有1个在里面就可以ans就可以++了耶 突然想到高中奥数老师说的,大概是 ...

  2. python 从bulkblacklist信誉查询网站提交查询

    import urllib import urllib2 #import webbrowser import re import socket def is_domain_in_black_list( ...

  3. Statspack的使用

    Statspack是Oracle 8i以上提供的一个非常好的性能监控与诊断工具,基本上全部包含了BSTAT/ESTAT的功能,更多的信息可以参考附带文档$ORACLE_HOME/rdbms/admin ...

  4. ML学习笔记- 神经网络

    神经网络 有的模型可以有多种算法.而有的算法可能可用于多种模型.在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则 ...

  5. 操作EXCEL COM组件

    操作Excel COM组件 --------------COM组件操作excel---------- 了解对象 Application:Excel运行环境,也就是excel程序 WorkBook:表示 ...

  6. ThinkPHP5 (路径优化,路由)

    路径:www.tp5.comm/index.php/index/index/index 站点路径/入口文件/模块/控制器/方法 一.绑定模块 public下的php文件,如index.php,内部写 ...

  7. java 读写分离

    源码地址:http://git.oschina.net/xiaochangwei 先回答下 1.为啥要读写分离? 大家都知道最初开始,一个项目对应一个数据库,基本是一对一的,但是由于后来用户及数据还有 ...

  8. WiFi无线连接过程中有哪几个主要步骤?

    WiFi无线连接过程中有哪几个主要步骤?[1]在使用WIFI功能时,经常性的操作是打开手机上的WiFi设备,搜索到心目中的热点,输入密码,联网成功,成功上网.这个看似简单的过程,背后却是隐藏着大量的无 ...

  9. 路飞学城Python-Day32【小结】

    import socket from multiprocessing import Process def talk(conn): while True: try: data = conn.recv( ...

  10. 装饰器阶段性练习(题目)[转载http://www.cnblogs.com/linhaifeng/p/7278389.html]

    # 一:编写函数,(函数执行的时间是随机的)# 二:编写装饰器,为函数加上统计时间的功能# 三:编写装饰器,为函数加上认证的功能## 四:编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件 ...