POJ 2318 叉积判断点与直线位置
Description
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
Output
Sample Input
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2
Hint
记玩具在点p0,某块板的上边点是p1,下边点是p2,p2p1(向量)×p2p0>0表示p0在p1p2的左面,<0表示在右面。接下来就是用二分法找出每个点所在的分区。
叉积+二分查找
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e6+, M = , mod = 1e9 + , inf = 0x3f3f3f3f;
typedef long long ll;
int n,m,x1,x2,y11,y2,ans[N],t1,t2;
struct point{int x,y;};
struct segment{point a,b;}s[N]; point sub(point a,point b) {//向量
point t;
t.x = a.x-b.x;
t.y = a.y-b.y;
return t;
}
int cross(point a,point b){//叉积公式
return a.x*b.y-b.x*a.y;
}
int turn(point p1,point p2,point p3){ //叉积
return cross(sub(p2,p1),sub(p3,p1));
}
void searchs(point x) {
int l=,r=n,mid,t=;
while(l<=r) {
mid = (l+r)>>;
if(turn(s[mid].a,s[mid].b,x) >= ) {
t = mid;l=mid+;
}
else r = mid-;
}
ans[t]++;
}
int main() {
while(scanf("%d",&n)&&n) {
memset(ans,,sizeof(ans));
scanf("%d%d%d%d%d",&m,&x1,&y11,&x2,&y2);
for(int i=;i<=n;i++){
scanf("%d%d",&t1,&t2);
s[i].a.x=t1;s[i].a.y=y11;
s[i].b.x=t2;s[i].b.y=y2;
}
for(int i=;i<=m;i++) {
point t;
scanf("%d%d",&t.x,&t.y);
searchs(t);
}
for(int i=;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
printf("\n");
}
}
POJ 2318 叉积判断点与直线位置的更多相关文章
- POJ2318TOYS(叉积判断点与直线位置)
题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...
- poj 2318(叉积判断点在线段的哪一侧)
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13120 Accepted: 6334 Description ...
- POJ 2398 - Toy Storage 点与直线位置关系
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5439 Accepted: 3234 Descr ...
- poj 2318 叉积+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13262 Accepted: 6412 Description ...
- POJ 2318 (叉积) TOYS
题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...
- poj 2398(叉积判断点在线段的哪一侧)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5016 Accepted: 2978 Descr ...
- POJ2318 TOYS(叉积判断点与直线的关系+二分)
Calculate the number of toys that land in each bin of a partitioned toy box. Mom and dad have a prob ...
- POJ 2398 map /// 判断点与直线的位置关系
题目大意: poj2318改个输出 输出 a: b 即有a个玩具的格子有b个 可以先看下poj2318的报告 用map就很方便 #include <cstdio> #include < ...
- poj2318(叉积判断点在直线左右+二分)
题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...
随机推荐
- 路由器wiff设置
1.将一根网线连接至路由wankou 2.将另外一根网页连接1.2.3.4口中一个,另外一个连接至电脑 3.登录192.168.1.1,进行设置向导选择ppoe,然后登录网络设置无线名称+密码 4.保 ...
- 在外星人电脑上安装windows10和ubuntu16.04双系统小记
最近刚刚入手了一台Alienware Aurora R6,买这货的主要目的是为了研究Deep Learning.之所以没有买组装机的原因,主要是担心组装机的不稳定,而实验经费中的设备费也还相对充足,于 ...
- UI设计师不可不知的安卓屏幕知识-安卓100分享
http://www.android100.org/html/201505/24/149342.html UI设计师不可不知的安卓屏幕知识-安卓100分享 不少设计师和工程师都被安卓设备纷繁的屏幕搞得 ...
- hdoj--2522--A simple problem(数学模拟)
A simple problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 利用CSS3中的clac()实现按照屏幕分辨率自适应宽度
1.简介 calc()看其外表像个函数.平时在制作页面的时候,总会碰到有的元素是100%的宽度(例如body元素).如果元素宽度为100%时,其自身不带其他盒模型属性设置还好,要是有别的,那将导致盒子 ...
- linux压缩(解压缩)命令详解
一.tar命令 tar可以为文件和目录创建档案.利用tar,用户可以为某一特定文件创建档案(备份文件),也可以在档案中改变文件,或者向档案中加入新的文件.tar 最初被用来在磁带上创 ...
- Centos7 minimal 系列之桥接模式联网(二)
一.桥接模式联网 之前用NAT模式连接网络,Centos是可以上网,而且Centos可以ping通主机,但是主机ping不通虚拟机.后来发现Nat模式只能由内而外. 1.1设置虚拟机的网络适配器 1. ...
- DirectUI界面编程(四)界面布局详解
Duilib的界面布局使用xml文件进行描述,在Duilib v1.1版本的xml布局文件中我们可以使用以下这些标签(后续版本标签有扩充): 这些标签总的来讲可以分为三类: 窗口类,该类别中只有一个W ...
- iOS11即将到来,让我们具体了解下
谷歌开发者大会后,苹果的WWDC终于也要来了,目前准确时间已经确定. 近日,苹果官方发出的公告显示,WWDC 2017将在北京时间6月6日凌晨1点正式进行,同时他们强调会进行现场直播,用户可以在苹果主 ...
- 并发编程——全局解释器锁GIL
1.全局解释器锁GIL GIL其实就是一把互斥锁(牺牲了效率但是保证了数据的安全). 线程是执行单位,但是不能直接运行,需要先拿到python解释器解释之后才能被cpu执行 同一时刻同一个进程内多个线 ...