HDU 5293 Train chain Problem - 树链剖分(树状数组) + 线段树+ 树型dp
题目大意:
一颗n个点的树,给出m条链,第i条链的权值是\(w_i\),可以选择若干条不相交的链,求最大权值和。
题目分析:
树型dp: dp[u][0]表示不经过u节点,其子树的最优值,dp[u][1]表示考虑经过u节点该子树的最优值(可能过,可能不过),很明显:$$dp[u][0] = \sum{max(dp[v][0], dp[v][1])} v是u的儿子$$, 下面来算dp[u][1]: 考虑一条经过u(以u为lca)的链,他经过子树中的节点v(可能有多个),那么$$dp[u][1] = dp[u][0] + w_i + max{-max(dp[v][0], dp[v][1]) + dp[v][0]}$$减去max(dp[v][0], dp[v][1])是因为我们更新dp[u][0]时取得是两者较大值,而此时需要减去的其实是dp[v][1],如果取较大值减去了dp[v][0],然后加上dp[v][0]就等于没减,没有影响,而若减去dp[v][1],然后加上dp[v][0],则刚好达到目的。
现在来考虑怎么求该链上的dp值:有两种方法
树链剖分 + 线段树 + dp: 链剖以便求lca和区间求和,在lca节点放入这条链,扫描完子树后(dfs子树完便得到dp[u][0]),处理以该节点u为lca的链x->y,将链拆成两条:x->u和u->y,另tmp = dp[u][0],\(tmp -= queryMaxDp0Dp1Sum(x, u), tmp += queryDp0Sum(x, u)\) 另一条链同理,处理完后,dp[u][1] = max(dp[u][1], tmp + \(w_i\));
处理完这些链后,将u节点的dp值插入链剖线段树中,并更新答案。总复杂度为\(n log^2n\)树状数组 + dp: 会快一点,但不会。
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
namespace IO{
inline int read(){
int i = 0, f = 1; char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(int x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
}using namespace IO;
const int N = 1e5 + 5, M = 1e5 + 5, OO = 0x3f3f3f3f;
int n, m, top[N], son[N], pos[N], tot, dep[N], fa[N], sze[N];
vector<int> G[N];
typedef long long ll;
ll ans, dp[N][2];
struct node{int u, v; ll val;};
vector<node> chainThrough[N];
namespace SegTree{
ll sum[N << 2], maxSum[N << 2];
inline void insert(int k, int l, int r, int pos, ll v, ll *t){
if(l == r){t[k] = v; return;}
int mid = (l + r) >> 1;
if(pos <= mid) insert(k << 1, l, mid, pos, v, t);
else insert(k << 1 | 1, mid + 1, r, pos, v, t);
t[k] = t[k << 1] + t[k << 1 | 1];
}
inline ll query(int k, int l, int r, int x, int y, ll *t){
if(x == l && r == y) return t[k];
int mid = (l + r) >> 1;
ll ret = 0;
// if(x <= mid) ret += query(k << 1, l, mid, x, y, t);
// if(y > mid) ret += query(k << 1 | 1, mid + 1, r, x, y, t);
// return ret;
if(y <= mid) return query(k << 1, l, mid, x, y, t);
else if(x > mid) return query(k << 1 | 1, mid + 1, r, x, y, t);
else return query(k << 1, l, mid, x, mid, t) + query(k << 1 | 1, mid + 1, r, mid + 1, y, t);
}
}using namespace SegTree;
inline void dfs1(int u, int f){
dep[u] = dep[f] + 1, fa[u] = f, sze[u] = 1;
for(int e = G[u].size() - 1; e >= 0; e--){
int v = G[u][e];
if(v == f) continue;
dfs1(v, u), sze[u] += sze[v];
if(sze[v] > sze[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int f){
if(son[u]){
pos[son[u]] = ++tot;
top[son[u]] = top[u];
dfs2(son[u], u);
}
for(int e = G[u].size() - 1; e >= 0; e--){
int v = G[u][e];
if(v == f || v == son[u]) continue;
pos[v] = ++tot;
top[v] = v;
dfs2(v, u);
}
}
inline int getLca(int u, int v){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
u = fa[top[u]];
}
return dep[u] < dep[v] ? u : v;
}
inline ll pathQuery(int u, int v, ll *t){
ll ret = 0;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
ret += query(1, 1, n, pos[top[u]], pos[u], t);
u = fa[top[u]];
}
if(dep[u] > dep[v]) swap(u, v);
return ret + query(1, 1, n, pos[u], pos[v], t);
}
inline void DP(int u, int f){
for(int e = G[u].size() - 1; e >= 0; e--){
int v = G[u][e];
if(v == f) continue;
DP(v, u), dp[u][0] += max(dp[v][0], dp[v][1]);
}
for(int i = 0; i < chainThrough[u].size(); i++){
int x = chainThrough[u][i].u, y = chainThrough[u][i].v;
ll tmp = dp[u][0];
if(dep[x] > dep[u]) tmp += pathQuery(x, u, sum), tmp -= pathQuery(x, u, maxSum);
if(dep[y] > dep[u]) tmp += pathQuery(y, u, sum), tmp -= pathQuery(y, u, maxSum);
dp[u][1] = max(dp[u][1], tmp + chainThrough[u][i].val);
}
insert(1, 1, n, pos[u], dp[u][0], sum);
insert(1, 1, n, pos[u], max(dp[u][1], dp[u][0]), maxSum);
ans = max(ans, max(dp[u][0], dp[u][1]));
}
inline void splitTree(){
tot = 1, pos[1] = 1, top[1] = 1;
dfs1(1, 0), dfs2(1, 0);
}
int T;
int main(){
T = read();
while(T--){
n = read(), m = read();
for(int i = 1; i <= n; i++) G[i].clear(), chainThrough[i].clear(), ans = 0;
memset(sze, 0, sizeof sze), memset(dep, 0, sizeof dep), memset(son, 0, sizeof son);
memset(sum, 0, sizeof sum), memset(maxSum, 0, sizeof maxSum), memset(dp, 0, sizeof dp);
for(int i = 1; i < n; i++){int u = read(), v = read(); G[u].push_back(v), G[v].push_back(u);}
splitTree();
for(int i = 1; i <= m; i++){int u = read(), v = read(); ll val = read()*1ll; chainThrough[getLca(u, v)].push_back((node){u, v, val});}
DP(1, 0);
// for(int i=1;i<=n;i++)for(int j=0;j<chainThrough[i].size();j++)cout<<i<<" "<<chainThrough[i][j].u<<" "<<chainThrough[i][j].v<<" "<<endl;
wr(ans), putchar('\n');
}
return 0;
}
HDU 5293 Train chain Problem - 树链剖分(树状数组) + 线段树+ 树型dp的更多相关文章
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- 【bzoj4999】This Problem Is Too Simple! 树链剖分+动态开点线段树
题目描述 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x<2^31) ...
- Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树)
Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树) Description 一棵树上有n个节点,编号分别 ...
- Qtree3题解(树链剖分(伪)+线段树+set)
外话:最近洛谷加了好多好题啊...原题入口 这题好像是SPOJ的题,挺不错的.看没有题解还是来一篇... 题意: 很明显吧.. 题解: 我的做法十分的暴力:树链剖分(伪)+线段树+\(set\)... ...
- (中等) HDU 5293 Tree chain problem,树链剖分+树形DP。
Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There are ...
- [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...
- 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)
题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...
- 树链剖分 - Luogu 3384【模板】树链剖分
[模板]树链剖分 题目描述 已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操 ...
- 刷题总结——骑士的旅行(bzoj4336 树链剖分套权值线段树)
题目: Description 在一片古老的土地上,有一个繁荣的文明. 这片大地几乎被森林覆盖,有N座城坐落其中.巧合的是,这N座城由恰好N-1条双 向道路连接起来,使得任意两座城都是连通的.也就是说 ...
随机推荐
- PythonNET网络编程3
IO IO input output 在内存中存在数据交换的操作都可以认为是IO操作 和终端交互 : input print 和磁盘交互 : read write 和网络交互 : recv send ...
- 00092_字符输出流Writer
1.字符输出流Writer (1)既然有专门用于读取字符的流对象,那么肯定也有写的字符流对象: (2)查阅API,发现有一个Writer类,Writer是写入字符流的抽象类.其中描述了相应的写的动作. ...
- [置顶]
WebService学习总结(4)——第三方webService服务调用
互联网上面有很多的免费webService服务,我们可以调用这些免费的WebService服务,将一些其他网站的内容信息集成到我们的Web应用中显示,下面就以获取天气预报数据和查询国内手机号码归属地为 ...
- angular 响应式自定义表单控件—注册头像实例
1. 组件继承ControlValueAccessor,ControlValueAccessor接口需要实现三个必选方法 writeValue() 用于向元素中写入值,获取表单的元素的元素值 regi ...
- 程序员的困境 - R中国用户组-炼数成金
原文:http://www.oschina.net/news/43389/the-plight-of-programmer 在大型公司中不能腐蚀自己的学习能力和时间能力. 最近我为一个内核程序员的职位 ...
- 度量空间(metric space)
一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...
- JAVA 日志库3
Commons Logging和SLF4J都是基于相同的设计,即从一个LogFactory中取得一个命名的Log(Logger)实例,然后使用这个Log(Logger)实例打印debug.in ...
- 学习jquery.pagewalkthroung.js插件记录点
1.53行:options = $.extend(true, {}, $.fn.pagewalkthrough.defaults, options); $.extend的作用是把第二个对象合并到第一个 ...
- 25、写一个USB摄像头驱动程序(有ioctrl分析)
videobuf2-core.h中的vb2_buffer,记录了v4l2_buffer ,驱动可以对vb2_buffer的v4l2_buffer进行操控, vb2_buffer是v4l2框架层的代码, ...
- 20、RTC驱动程序
drivers\rtc\rtc-s3c.c s3c_rtc_init platform_driver_register s3c_rtc_probe rtc_device_register(" ...