题解 UVA10328 【Coin Toss】
这道题目其实就是说有N张纸牌,问至少连续K张正面朝上的可能性是多少。
可以用递推做。
首先我们将题目所求从
至少K张
转化为
总数 - 至多K张
(为什么要这样自己想)
设F[i][j]为前i个纸牌至多K张的种数。其中j记录第i张纸牌的状态,1为正面朝上,0为反面。
那么可以总结出
f[i][] = f[i - ][] + f[i - ][];
f[i][] = f[i - ][] + f[i - ][];
if(i == k) f[i][] -= ;
else if(i > k) f[i][] -= f[i - k][];
最后要记住这道题需要写高精,我第一次就是这么扑街的。
注:高精用的模板,手残就全加上了,事实上只用加减法。
AC代码如下(洛谷上不知道为什么被积极拒绝,只好去Vjudge上提交。。。没去UVa才不是因为我没有注册。)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <cassert>
using namespace std; const int maxn = ; struct BigInteger {
typedef unsigned long long LL; static const int BASE = ;
static const int WIDTH = ;
vector<int> s; BigInteger& clean(){while(!s.back()&&s.size()>)s.pop_back(); return *this;}
BigInteger(LL num = ) {*this = num;}
BigInteger(string s) {*this = s;}
BigInteger& operator = (long long num) {
s.clear();
do {
s.push_back(num % BASE);
num /= BASE;
} while (num > );
return *this;
}
BigInteger& operator = (const string& str) {
s.clear();
int x, len = (str.length() - ) / WIDTH + ;
for (int i = ; i < len; i++) {
int end = str.length() - i*WIDTH;
int start = max(, end - WIDTH);
sscanf(str.substr(start,end-start).c_str(), "%d", &x);
s.push_back(x);
}
return (*this).clean();
} BigInteger operator + (const BigInteger& b) const {
BigInteger c; c.s.clear();
for (int i = , g = ; ; i++) {
if (g == && i >= s.size() && i >= b.s.size()) break;
int x = g;
if (i < s.size()) x += s[i];
if (i < b.s.size()) x += b.s[i];
c.s.push_back(x % BASE);
g = x / BASE;
}
return c;
}
BigInteger operator - (const BigInteger& b) const {
assert(b <= *this); // 减数不能大于被减数
BigInteger c; c.s.clear();
for (int i = , g = ; ; i++) {
if (g == && i >= s.size() && i >= b.s.size()) break;
int x = s[i] + g;
if (i < b.s.size()) x -= b.s[i];
if (x < ) {g = -; x += BASE;} else g = ;
c.s.push_back(x);
}
return c.clean();
}
BigInteger operator * (const BigInteger& b) const {
int i, j; LL g;
vector<LL> v(s.size()+b.s.size(), );
BigInteger c; c.s.clear();
for(i=;i<s.size();i++) for(j=;j<b.s.size();j++) v[i+j]+=LL(s[i])*b.s[j];
for (i = , g = ; ; i++) {
if (g == && i >= v.size()) break;
LL x = v[i] + g;
c.s.push_back(x % BASE);
g = x / BASE;
}
return c.clean();
}
BigInteger operator / (const BigInteger& b) const {
assert(b > ); // 除数必须大于0
BigInteger c = *this; // 商:主要是让c.s和(*this).s的vector一样大
BigInteger m; // 余数:初始化为0
for (int i = s.size()-; i >= ; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return c.clean();
}
BigInteger operator % (const BigInteger& b) const { //方法与除法相同
BigInteger c = *this;
BigInteger m;
for (int i = s.size()-; i >= ; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return m;
}
// 二分法找出满足bx<=m的最大的x
int bsearch(const BigInteger& b, const BigInteger& m) const{
int L = , R = BASE-, x;
while () {
x = (L+R)>>;
if (b*x<=m) {if (b*(x+)>m) return x; else L = x;}
else R = x;
}
}
BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;} bool operator < (const BigInteger& b) const {
if (s.size() != b.s.size()) return s.size() < b.s.size();
for (int i = s.size()-; i >= ; i--)
if (s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator >(const BigInteger& b) const{return b < *this;}
bool operator<=(const BigInteger& b) const{return !(b < *this);}
bool operator>=(const BigInteger& b) const{return !(*this < b);}
bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}
bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
}; ostream& operator << (ostream& out, const BigInteger& x) {
out << x.s.back();
for (int i = x.s.size()-; i >= ; i--) {
char buf[];
sprintf(buf, "%08d", x.s[i]);
for (int j = ; j < strlen(buf); j++) out << buf[j];
}
return out;
} istream& operator >> (istream& in, BigInteger& x) {
string s;
if (!(in >> s)) return in;
x = s;
return in;
} int n, k;
BigInteger f[maxn][]; int main() {
while(cin >> n >> k) {
memset(f, , sizeof(f));
f[][] = ;
for(int i = ; i <= n; i++) {
f[i][] = f[i - ][] + f[i - ][];
f[i][] = f[i - ][] + f[i - ][];
if(i == k) f[i][] = f[i][] - ;
else if(i > k) f[i][] = f[i][] - f[i - k][];
}
BigInteger a = , t = ;
for(int i = ; i < n; i++) a = t * a;
cout << a - f[n][] - f[n][] << endl;
}
}
题解 UVA10328 【Coin Toss】的更多相关文章
- UVA 10328 - Coin Toss dp+大数
		题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ... 
- UVA 10328 Coin Toss
		Coin Toss Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: ... 
- Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)
		有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ... 
- UVa 10328 Coin Toss(Java大数+递推)
		https://vjudge.net/problem/UVA-10328 题意: 有H和T两个字符,现在要排成n位的字符串,求至少有k个字符连续的方案数. 思路:这道题目和ZOJ3747是差不多的,具 ... 
- POJ 3440 Coin Toss(概率)
		题目链接 概率问题,像是概率论上学的均匀分布,是不是呢,忘了... 概率同面积有关系,我写的各种搓,然后此题格式十分变态,=前有的时候俩空格,有的时候一个空格.代码各种搓. #include < ... 
- UVa 10328 - Coin Toss (递推)
		题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ... 
- POJ 3440 Coin Toss(求概率)
		题目链接 题意 :把硬币往棋盘上扔,分别求出硬币占1,2,3,4个格子的时候的概率. 思路 : 求出公式输出,不过要注意输出格式,我还因为输入的时候用了int类型错了好几次..... #include ... 
- poj 3440 Coin Toss 概率问题
		这题主要是推导数学公式!!! 将概率问题转化为圆心所在的面积! 代码如下: #include<iostream> #include<stdio.h> #include<a ... 
- Coin Toss
		http://acm.hust.edu.cn/vjudge/contest/view.action?cid=31329#problem/G 使用二维数组f[ i ] [ j ] 表示前i 位中有j个 ... 
随机推荐
- 【原创】RPM安装软件时解决依赖性问题(自动解决依赖型)
			满足以下3个条件才能自动解决依赖性: 1.使用rpmdb -redhat(在安装时会自动弹出依赖性错误) 2.所有互相依赖的软件都必须在同一个目录下面. 3.调用-aid参数. 
- STM8S103之独立看门狗和窗口看门狗
			独立看门狗时钟来源为LSI:窗口看门狗时钟来源为CPU: 窗口看门狗窗口的含义是:喂狗必须在一定的窗口期内完成,不能过早也不能过晚. 总结:防止程序复位,用独立看门狗. 独立看门狗使用的流程:参见库函 ... 
- nginx访问日志access_log
			在 nginx.conf 配置文件 http{} 方法体的括号内,增加或者打开以下代码注释: log_format main '$remote_addr - $remote_user [$time_l ... 
- NOIp2018模拟赛四十五~??
			欠的太多,咕了咕了 最近复赛临近时间紧,就不每次都写感想和题解了,只写点有意义的好题 
- sql 技巧
			1.想把一张表的 某个字段或多个字段 的 所有数据 复制到另外一张表里 insert into 表名(字段) select (字段) from 表名 2.from Users u , IN(u.ro ... 
- git 源码安装后报错/usr/bin/git: No such file or directory
			现象 今天源码安装一个git后,执行git命令后报如下错误: $ git --version -bash: /usr/bin/git: No such file or directory 分析过程 开 ... 
- LVM 镜像硬盘更换、数据恢复(centos7.4 redhat7.5)
			案例说明 Centos7 VG:vg LV:vg-lvRedhat 7.5VG:vgtest LV:lvtest 目的:模拟硬盘 /dev/sdb损坏.在线添加新硬盘/dev/sdc,lv镜像数据 ... 
- Python实现机器人语音聊天
			一.前言说明 1.功能简述 登录后进入聊天界面,如果服务器都在同一个地址,则都进入同一个房间 进入/离开/发消息同一房间用户都可以看到,输入“tuling”或“chatbot”可以切换为和Tuling ... 
- ping,telnet,ssh命令的理解
			ping主要用于测试到达目的主机的网络是否连接,但是它不能检测某个端口是否开放. ping 域名可以直接看出这个域名对应的ip ssh与telnet都是远程登录工具. ssh对传输加密,安全性高,te ... 
- OpenCASCADE直线与平面求交
			OpenCASCADE直线与平面求交 在<解析几何>相关的书中都给出了直线和平面的一般方程和参数方程.其中直线的一般方程有点向式形式的. 由于过空间一点可作且只能作一条直线平行于已知直线, ... 
