hdu 3306 Another kind of Fibonacci(矩阵高速幂)
Another kind of Fibonacci
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1691 Accepted Submission(s): 660
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 231 – 1
X : 2<= X <= 231– 1
Y : 2<= Y <= 231 – 1
2 1 1
3 2 3
6
196

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int mod=10007;
struct matrix
{
long long ma[5][5];
};
matrix multi(matrix x,matrix y)//矩阵相乘
{
matrix ans;
memset(ans.ma,0,sizeof(ans.ma));
for(int i=1;i<=4;i++)
{
for(int j=1;j<=4;j++)
{
if(x.ma[i][j])//稀疏矩阵优化
for(int k=1;k<=4;k++)
{
ans.ma[i][k]=(ans.ma[i][k]+(x.ma[i][j]*y.ma[j][k])%mod)%mod;
}
}
}
return ans;
}
matrix pow(matrix a,long long m)
{
matrix ans;
for(int i=1;i<=4;i++)
{
for(int j=1;j<=4;j++)
{
if(i==j)
ans.ma[i][j]=1;
else
ans.ma[i][j]=0;
}
}
while(m)
{
if(m&1)
ans=multi(ans,a);
a=multi(a,a);
m=m>>1;
}
return ans;
}
int main()
{
long long x,y,n;
while(~scanf("%I64d%I64d%I64d",&n,&x,&y))
{
matrix a,b;
memset(a.ma,0,sizeof(a.ma));
memset(b.ma,0,sizeof(b.ma));
a.ma[1][1]=1;
a.ma[1][2]=1;
a.ma[2][2]=(x*x)%mod;
a.ma[2][3]=(y*y)%mod;
a.ma[2][4]=(2*x*y)%mod;
a.ma[3][2]=1;
a.ma[4][2]=x;
a.ma[4][4]=y;
b.ma[1][1]=1;
b.ma[2][1]=1;
b.ma[3][1]=1;
b.ma[4][1]=1;
a=pow(a,n);
a=multi(a,b);
printf("%I64d\n",a.ma[1][1]);
}
return 0;
}
hdu 3306 Another kind of Fibonacci(矩阵高速幂)的更多相关文章
- hdu 3306 Another kind of Fibonacci 矩阵快速幂
参考了某大佬的 我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1] ...
- HDU1588-Gauss Fibonacci(矩阵高速幂+等比数列二分求和)
题目链接 题意:g(x) = k * x + b.f(x) 为Fibonacci数列.求f(g(x)),从x = 1到n的数字之和sum.并对m取模. 思路: 设A = |(1, 1),(1, 0) ...
- HDU 4965 Fast Matrix Calculation(矩阵高速幂)
HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...
- HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) T ...
- HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)
Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
随机推荐
- hdu 1533 Going Home 最小费用最大流 入门题
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- WIN8.1 上安装 debian8.7 遇到的问题及解决方法
WIN8.1 上安装 debian8.7 遇到的问题及解决方法 参照百度经验 <win7下硬盘安装debian7> ( http://jingyan.baidu.com/article/8 ...
- worktools-mmx 添加编译模块
1,添加模块到mmx.py文件 1>vim /home/zhangshuli/git/vanzo_team/xulei/mmx.py 2>按照格式"Gallery2": ...
- JS实现文件另存为
JS实现文件另存为 //下载平面图 function downPlan() { var oPop = window.open(src, "", "width=1, hei ...
- 相对路径 System.Web HttpServerUtilityBase Server.MapPath("~/")
相对路径 System.Web HttpServerUtilityBase Server.MapPath("~/")
- Spring学习总结(6)——Spring之核心容器bean
一.Bean的基础知识 1.在xml配置文件中,bean的标识(id 和 name) id:指定在benafactory中管理该bean的唯一的标识.name可用来唯一标识bean 或给bean起别名 ...
- mysql集群搭建教程-基础篇
计算机一级考试系统要用集群,目标是把集群搭建起来,保证一个库dang了,不会影响程序的运行.于是在孟海滨师哥的带领下开始了我的第一次搭建mysql集群,首先看了一些关于集群的资料,然后根 ...
- POJ——T 1006 Biorhythms
http://poj.org/problem?id=1006 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 138219 ...
- 基于Redis bitmap实现开关配置功能
作者:zhanhailiang 日期:2014-12-21 bitmap api SETBIT key offset value 对key所储存的字符串值,设置或清除指定偏移量上的位(bit). 位的 ...
- HTML基础第六讲---表格
转自:https://i.cnblogs.com/posts?categoryid=1121494 上一讲,讲了关于<控制表格及其表项的对齐方式>,在这里我要讲讲表格及其属性 ,然后大家在 ...